講演番号 17pV1-11

ニュートリノ中性カレント反応理解のための 中性子・酸素原子核反応に関する研究

田野智大、白石悠樹、小汐由介、蓬莱明日、芦田洋輔、中家剛、WENDELL RogerA、 森正光A、COLLAZUOL Gianmaria^B、IACOB Fabio^B、KONAKA Akira^C、嶋達志^D

岡大理、京大理^A、Padova University^B、TRIUMF^C、RCNP^D

2021年9月17日 日本物理学会 2021秋季大会

1.研究背景

2. E525実験

3. 中性子フラックス解析

4. ガンマ線解析

5.まとめ

1. 研究背景

- スーパーカミオカンデ(SK)
 - ▶ 岐阜県飛騨市にある水チェレンコフ検出器
 - ▶ 内水槽は5万トンの超純水で満たされている

- 超新星背景ニュートリノ(SRN)
 - ▶ 過去の超新星爆発によるニュートリノの重ね合わせ
 - ► SK-Gd実験によって探索が行われている
 - ▶ 爆発機構・重元素合成過程の解明につながる

1. 研究背景

大気ニュートリノのNCQE反応

$$\bar{\nu_e} + p \to e^+ + n$$

 $\nu + {}^{16}\text{O} \rightarrow \nu + {}^{15}\text{O}^* + n$

 2次ガンマ線 ► NCQE反応断面積の測定 → 2次ガンマ線の不定性が大きい ーモチベーション 中性子・酸素原子核反応を理解し、

2次ガンマ線の不定性を削減する

► SKで識別できない → シミュレーションによる見積もり

	Signal	Backg	Background	
	NCQE	NC non-QE $$	$\mathbf{C}\mathbf{C}$	
Fraction of Sample	68%	26%	4%	
Flux	11%	10%	12%	
Cross sections	-	18%	24%	
Primary γ production	15%	3%	9%	
Secondary γ production	13%	13%	7.6%	
Detector response	2.2%	2.2%	2.2%	
Oscillation Parameters	-	-	10%	
Total Systematic Error	23%	25%	31%	

2.1 E525実験

30 MeV · 250 MeV

3. 中性子フラックス

- 即発ガンマ線と中性子の飛来時間(ToF)を利用して エネルギー再構成を行った
- SCINFUL-QMDシミュレーションにより、LqSの 中性子検出効率を計算
- フラックスは220 MeV~250 MeVにピークをもつ → この領域を反応断面積計算に用いる

4.1 ガンマ線スペクトラム

4.2 バックグラウンド

主な背景事象

- ビームエネルギー領域外の中性子 による反応
 - ► ToFを用いたエネルギーカット
- 散乱中性子の影響
 - ► Csl で測定
 - ▶影響は小さく、無視できる
- 熱中性子による影響
 - ▶ off timing 領域のイベントを用いる

4.3 HPGe検出器のToF分布

- 中性子フラックスのピーク:220~250 MeV
- LqS のToF分布では $\Delta t = 44.2 \sim 49.5$ ns に対応
- HPGeのToF分布は、LqSより広がっている → on timing 領域も広げる必要がある
- 分布の広がりが違う原因として、時間分解能の 違いが考えられる
 - ► LqS : 1.9 ns、 HPGe : 6.8 ns

LqSの時間分解能をなまらせた ToF 分布を作成 → データと合っていれば、その分布を元に on timing 領域を決定できる

4.4 時間分解能をなまらせた分布を作成

LqSの時間分解能を 6.8 ns に広げたToF分布を作成

LqSのデータから計算したToFの値 (ToF_{data})を取ってくる

ToF_{data}の周りで乱数($\sigma = 1.9 \text{ ns}$)をふり 真の値 (ToF_{true})を推定

ToF_{true}の周りで乱数($\sigma = 6.8$ ns)をふる

4.5 データとの比較

HPGe data と LqS data

HPGe data と resolution=6.8 nsの分布

今後はこの分布を利用して on timing カット領域を決めていく

5.まとめ

- 反応の理解が不可欠である
- RCNPでE525実験が行われ、250 MeV実験の解析を進めている

 今後は、HPGeのToF分布で on timing な領域を決定し、背景事象を取り除いた スペクトラムを求める

反応断面積の計算を行う

• SRN探索における大気ニュートリノ由来の背景事象の見積もりには、中性子と酸素原子核の

Back up

3.1 LqSによる中性子の検出効率

- SCINFUL-QMD コードを用いてLqSの 検出効率を計算した
 - ► \sim 150 MeV : SCINFUL
 - ▶ 150 MeV~: QMD + SDM (核反応模型)

 80 MeV~150 MeVでは、検出効率を 過大評価している → 内挿して使用

3.2中性子フラックス

- ピークの積分値
 - ► 本研究(250 MeV): 5.46 × 10⁹
 - Y. Iwamoto (246 MeV) : 1.05×10^{10}

<u>consistent な結果が得られた</u>

17

4.3 HPGe検出器のToF分布

300 keV~500 keVのイベント

 HPGe検出器はビーム軸上にないため、 即発ガンマ線が見えにくい

- - LqS: 1.2 ns HPGe: 6.8 ns

4.3時間分解能の違い

LqSのデータからToFの値を計算

その周りで乱数(sigma=1.2 ns)をふり、 真の値 ToF_{true} を推定

ToF_{true}の周りで乱数(sigma=6.8 ns)をふる

LqSのToF分布(resolution = 1.2 ns)を元に、resolutionが6.8 nsに広がった分布を予測した

4.3 時間分解能の違い

HPGe data と LqS data

- HPGe data と resolution=6.8 nsの分布は <u>同程度の広がり</u>をもっている
- 特に、メインピークの立ち上がり部分は よく合っている

HPGe data と resolution=6.8 nsの分布

4.3 時間分解能の違い

HPGe data と LqS data

HPGe data と resolution=6.8 nsの分布

on timing カット領域を決めていく

_ _ _