

1. Introduction

Supernova Relic Neutrinos (SRNs)

- Neutrinos from all past core-collapse supernovae are accumulated to form an integrated flux \rightarrow SRNs
- Detecting SRNs would provide valuable information about the supernova mechanism and the star formation history [1]

SK-Gd (2020 -)

• Loads 0.1% (currently 0.011%) of gadolinium (Gd) to enhance the neutron tagging efficiency to ~80% (currently ~50%) \rightarrow Can reduce the background of SRNs search [2]

Atmospheric neutrino background of SRNs search

- Neutral-current quasielastic (NCQE) interactions
 - \rightarrow Cannot be removed even in SK-Gd \rightarrow Need to estimate precisely by MC

3. Results

Total charge

- Total charge at peak is different by ~1.5% between two simulations
- \rightarrow Comes from **ionization model** (dE/dx)

SKDETSIM : $(dE/dx)_{H_2O}$ (Based on [3], [4])

SKG4 $(16/18)(dE/dx)_0$ $+(2/18)(dE/dx)_{\rm H}$

 \rightarrow Should change dE/dx of SKG4

Angle distribution of Cherenkov light

- Cherenkov angle difference between e and μ is important for PID
- The difference is large at high angle
 - \rightarrow There is a **correction of Mott** scattering in multiple scattering model of Geant4 (SKG4) while there is not in that of GEANT3 (SKDETSIM)
- Remove the correction as a check \rightarrow The difference becomes small
- Decide if we apply correction of Mott scattering in SKG4 by looking at data

The performance evaluation of **Geant4-based simulation in SK-Gd experiment**

Seiya Sakai (Okayama University) for the Super-Kamiokande Collaboration

~1,000 m 50 kton (FV 22.5 I ~30 µsec (Gd : 0.1%) ~110 µsec (Gd : 0.01%) \bigcirc (~8 MeV)

[1] K. Abe et al., Phys. Rev. D 104, 122002 (2021) [2] J. F. Beacom and M. R.Vagins, Phys. Rev. B 26, 6067 (1982) [4] R. M. Sternheimer et al., BNL-33571 (1983) [3] R. M. Sternheimer et al., Phys. Rev. B 26, 6067 (1982) [4] R. M. Sternheimer et al., BNL-33571 (1983)

2. Performance evaluation of Geant4-based simulation

• So far GEANT3-based detector simulation program (SKDETSIM) has been used \rightarrow An accurate neutron transport model and a model of γ -rays from neutron capture are not implemented in GEANT3

 \rightarrow Geant4-based detector simulation program (SKG4) was developed Need to evaluate its performance at all energy region to use it for physics analyses \rightarrow Evaluated its performance using e and μ with 1 GeV kinetic energy

Evaluation method

• Generate 100,000 e or μ from center of SK tank isotropically both in SKDETSIM and SKG4 \rightarrow Compare basic distributions between SKDETSIM and SKG4 (Show the distributions in **bold**)

- Total charge (energy)
- Angle distribution of Cherenkov light
- **PID** (particle identification)
- # of Cherenkov rings Momentum

 \rightarrow Mainly comes from **multiple scattering model** and **ionization**

Make the conditions equal between two simulations

(e.g.) No scattering, No δ -rays, Use dE/dx of SKDETSIM, etc.

• Want to use SKG4 for physics analyses in future \rightarrow Confirmed the physics models in SKDETSIM

 \rightarrow Mainly multiple scattering and ionization models are different between two simulations

Plan

- MC

Study neutron multiplicity in atmospheric neutrino

Compare basic distributions of event reconstruction both for NCQE and SRNs events in MC Estimate atmospheric neutrino background of SRNs search in SKG4