

Measurement of the charge ratio of the cosmic-ray muon

with the Super-Kamiokande detector

Tomoaki Tada^A, Hussain Kitagawa^A, Yuuki Nakano^B, Yusuke Koshio^A,

for the Super-Kamiokande collaboration Okayama University^A, Kamioka observatory^B

E-mail : tadatomo2976@s.okayama-u.ac.jp, ynakano@km.icrr.u-tokyo.ac.jp

1. Introduction & Motivations

Muon charge ratio $R (\mu^+/\mu^-)$

- The muon charge ratio is the number of positive to negative atmospheric muons arriving at the Earth's surface.
- This value is about 1.27 below 200 GeV while it increases with higher momentum region. [1]
- \rightarrow Muons from kaon decay tend to have large energy than those from pion. [2]

Physics motivations

 $\cdot\,$ We measured the muon charge ratio at muon energy of 1.3 TeV using

3. Analysis

Selection cuts

[Muon]

Down going muons stopped inside the ID are selected.

[Decay-e]

- Time difference between muon stop and decay-e generation (tdiff) is 1.3 μ sec < tdiff < 30 μ sec.
- The reconstructed decay-e energy is greater than 8 MeV.
- Position difference between muon stop position and vertex of decay-e is less than 300 cm.
- \rightarrow After these cuts, **2,000,000 pairs of muon and decay-e** are selected.

- Super-Kamiokande data.
- \rightarrow Improve the atmospheric neutrino flux simulation.
- \rightarrow Constrain the high energy hadronic interaction models.

- 2. Super-K & Reconstruction methods
- Super-K detector (SK)
 - Water Cherenkov detector, located 1,000m underground.
 - Containing 50 kton of ultra-pure water. [3]
 - Separated into an inner detector (ID) and an outer detector (OD).
 - \rightarrow Gd-loaded water since July 2020 (SK-VI), and additional loading has been done on July 2022 (SK-VII). [4]

Negative muon capture

 Δt : Binning width (0.1 μ sec)

 τ_{μ^+} : Lifetime of positive muon

- Negative muon tends to be captured on Oxygen in water.
 - \rightarrow As a result, negative muon lifetime is shorter. (About 1.8 μ sec)
- 18.4% of negative muons produce Nitrogen-14 & -15, which emit γ rays soon. [7, 8]
 - \rightarrow Need to correct the number of the negative muons.
- \rightarrow Correction factor : $\Lambda_c = 0.184 \pm 0.001$

Measurement of the muon charge ratio

 Counting the number of positive and negative muons by fitting the decay curve.

$$N\{t - (t + \Delta t)\} = N_{+} \left\{ 1 - \exp\left(-\frac{\Delta t}{\tau_{\mu^{+}}}\right) \right\} \exp\left(-\frac{\Delta t}{\tau_{\mu^{+}}}\right) + N_{-} \left\{ 1 - \exp\left(-\frac{\Delta t}{\tau_{\mu^{-}}}\right) \right\} \exp\left(-\frac{\Delta t}{\tau_{\mu^{-}}}\right)$$

$$Example in 2017 data (280.9 days)$$

$$\mathbb{E}_{10^{7}} = \mathbb{E}_{10^{7}} = \mathbb$$

Muons, whose energy is more than 1.3 TeV, enter the detector at 2 Hz.
 → About 2500 muons stop in the detector and decay into an electron (decay-e) per day. (less than 20 GeV)

Phase	SK-I	SK-II	SK-III	SK-IV	SK-V	SK-VI	SK-VII
Period	1996/04 ~ 2001/07	2002/10 ~ 2005/10	2006/07 ~ 2008/08	2008/09 ~ 2018/05	2019/01 ~ 2020/07	2020/07 ~ 2022/06	2022/06~
Livetime	1496	791	548	2970	379	454	Running
ID PMTs	11,146	5,182	11,129	11,129	11,129	11,129	11,129
OD PMTs	1,185	1,185	1,185	1,185	1,185	1,185	1,185

In this poster, we analyzed the SK-IV data. (SK-IV : Pure water phase)

- Reconstruction methods
 Pair of muon and decaye is tagged with
 - Pair of muon and decay-e is tagged within [-5, +35] μ sec window.
 [Muon]
 - Track(s) and direction(s) : Timing information of ID PMTs.
 - Stopping position : dE/dx of the muon track. [5]
 [Decay-e]
 - Vertex : The residual timing of hit PMTs.
 - Direction : Locations of hit PMTs.

2.1969811 ± 0.0000022 μ sec t_{μ^-} : Lifetime of negative muon in water 1.7954 ± 0.020 μ sec $R(\mu^+/\mu^-) = \frac{N_+}{N_-/(1-\Lambda_c)}$

4. Results

- The charge ratio : $R(\mu^+/\mu^-) = 1.42 \pm 0.02$ (stat.)
 - \rightarrow Consistent with Kamiokande-II [9]
- The yearly variation of the charge ratio in SK-IV is not significant.
- This result is higher than the expected value based on the theoretical model. [10]

• Energy : The number of hit PMTs after corrections by many factors. [6]

References

41

[1] Pays. Lett. B 692, 83 (2010). [2] Earth, Planet and Space 62, 195-199 (2010).
 [3] Nucl. Inst. Meth. A 501, 418 (2003). [4] Nucl. Inst. Meth. A 1027, 166248 (2022).
 [5] Phys. Rev. D 93, 012004 (2016). [6] Phys. Rev. D 94, 052010 (2016). [7] Phys. Rev. C 35, 2212 (1987).
 [8] Physics Reports 354, 243-409 (2001). [9] Phys. Rev. D 44, 617 (1991). [10] Astropart. Phys. 32, 61(2009).

5. Summary & Prospects

 Determine the muon charge ratio by measuring the lifetime of decay electrons in Super-Kamiokande.

 $\rightarrow R(\mu^+/\mu^-) = 1.42 \pm 0.02$ (only statistical uncertainty)

- \rightarrow Estimation of systematic uncertainties will be completed soon.
- The study of the polarization of the cosmic-ray muons is now ongoing. \rightarrow Evaluate the angle between the direction of muon and decay-e.

The 21st international workshop on Next Generation Nucleon Decay and Neutrino Detectors (NNN22) @ Hida City Cultural Communication Center, Sep, 28th ~ 30th 2022