

スーパーカミオカンデ実験における宇宙線ミューオンの 電荷比とスピン偏極度の測定

多田智昭、中野佑樹^A、北川芙西音、小汐由介 岡大理、東大宇宙線研^A、他 Super-Kamiokande collaboration

2023年3月23日 日本物理学会 2023春季大会 @オンライン

▲研究の目的

● スーパーカミオカンデ (SK)

● 先行研究

▲研究の測定

● 結果

本研究の目的

宇宙線ミューオンの電荷比 R(µ+/µ-)

- 宇宙線ミューオンの正負の数の比
 - ▶ 一次宇宙線が正電荷の陽子のため
 - ミューオンのエネルギーに伴って大きくなる

宇宙線ミューオンのスピン偏極度 P

- 宇宙線ミューオンのもつスピンの偏り
 - ▶ スピンの向き
 - → 親中間子の崩壊過程 + 相対論的な伝搬
 - ▶ 崩壊電子の運動方向はスピンの向きに依存

研究目的

SKに到来するミューオンは地上で~TeV以上

▶ <u>TeV 領域の宇宙線ミューオンの</u> <u>電荷比とスピン偏極度の測定</u>

- ◆ 大気 ν フラックスや大気 ν /anti- ν の不定性を削減 → 大気 ν シミュレーションがより精密になる
- ◆ 大気中のハドロン生成モデルに制限

スーパーカミオカンデ (SK)

検出器

- ◆ 大型水チェレンコフ検出器
- 岐阜県飛騨市神岡町の地下1,000m

構造

- 約5万トンの超純水が入った2層式タンク(内水槽・ 外水槽)
- 2020年7月からGd溶液(SK-Gd実験)

検出原理

◎ 荷電粒子のチェレンコフ光をPMTで検出

Phase	SK-I	SK-II	SK-III	SK-IV	SK-V	SK-VI	SK-VII
Period	1996/04 ~ 2001/07	2002/10 ~ 2005/10	2006/07 ~ 2008/08	2008/09 ~ 2018/05	2019/01 ~ 2020/07	2020/07 ~ 2022/06	2022/06~
Livetime	1496	791	548	2970	379	454	Running
ID PMTs	11,146	5,182	11,129	11,129	11,129	11,129	11,129
OD PMTs	1,185	1,185	1,185	1,185	1,185	1,185	1,185
Water	Pure water	Pure water	Pure water	Pure water	Pure water	Gd water	Gd water

~1,000m

4

本講演では<u>SK-IV(2970.1 days:純水期)</u>の観測デー
 タからタンク内で静止したミューオンとその崩壊電子
 の事象を探索し測定

先行研究 (電荷比の測定)

岡山大学 北川さんの解析

➡問差分布を指数関数の重ね合わせでFit

▶ 水中での平均寿命の違いを利用 τ_{µ+}: 2.1969811 ± 0.0000022 µsec τ_{µ-}: 1.7954 ± 0.020 µsec Λ_c: 18.39 ± 0.01 % (原子核捕獲 ② の割合)

- ▶ Fitから粒子数 *N*₊/*N*_ を算出
- ▶ ②の補正を行い、電荷比を算出

$$N\{t - (t + \Delta t)\} = N_{+} \left\{ 1 - \exp\left(-\frac{\Delta t}{\tau_{\mu^{+}}}\right) \right\} \exp\left(-\frac{\Delta t}{\tau_{\mu^{+}}}\right)$$
$$+ N_{-} \left\{ 1 - \exp\left(-\frac{\Delta t}{\tau_{\mu^{-}}}\right) \right\} \exp\left(-\frac{\Delta t}{\tau_{\mu^{-}}}\right)$$
$$R(\mu^{+}/\mu^{-}) = \frac{N_{+}}{N_{-}/(1 - \Lambda_{c})}$$

▶ SK-IV (2970 days : 純水期) での測定結果

 $R(\mu^+/\mu^-) = 1.42 \pm 0.02$ (stat. only)

本研究の測定 (用いる変数)

本研究の測定 (χ^2 の計算)

観測データとMCの χ^2 を評価

MC production

● 電荷比を変数としてMCを作成

観測データの分布との χ^2

測定結果 $\rightarrow \chi^2$ が最小となる電荷比

$$\chi^{2} = \sum_{i}^{nbins} \frac{(N_{i}^{Data} - N_{i}^{MC})^{2}}{(Error_{i}^{Data})^{2} + (Error_{i}^{MC})^{2} + (Systematic_{i})^{2}}$$
$$\chi^{2}_{sum} = \chi^{2}_{Energy} + \chi^{2}_{Decay-time}$$

測定結果

過去の実験との比較

SK-IV (2970 days : 純水期)の結果 電荷比 R = 1.34 ± 0.02 (stat. + syst.) 先行研究の結果 電荷比 R = 1.42 ± 0.02 (stat. only)

▶ SKのタンク内で静止するミューオンのエネルギーは地上で約1.3 TeV

▶ 電荷比は理論予測値と1σ以内で一致

まとめ

- 宇宙線ミューオンの電荷比とスピン偏極度
 - ▶ 大気 ν スペクトルや大気 ν /anti- ν の不定性を削減 → 大気 ν シミュレーションがより精密になる
 - ▶ 大気中のハドロン生成モデルに制限
- ▲ スーパーカミオカンデでミューオン・崩壊電子事象を探索
 ▶ ミューオンのエネルギーは地上で約1.3 TeV程度
 ▶ SK-IV (2970.1 days:純水期)

🌢 先行研究

- ▶ 観測データの時間差分布を指数関数でFitする
- ▶ 電荷比R = 1.42 ± 0.02 (stat. only)

● 本研究の測定

- ▶ 観測データとMCの _X² を評価
- ▶ 評価に用いる変数:崩壊電子のエネルギー・時間差

🌒 測定結果

- ▶ 電荷比R = 1.34 ± 0.02 (stat. + syst.)
 - → 理論予測と1 σ の範囲内で一致

- 今後について
 - ▶ ミューオンと崩壊電子の間の角度分布 を用いてスピン偏極度を測定する
 - ▶ 電荷比とスピン偏極度を同時に決定

Back up

本研究の物理背景

ニュートリノ振動

- Mass hierarchy of Δm_{23}^2
- Octant of θ_{23}
- Value of ϕ_{CP}

大気ニュートリノ観測

- 振動パラメータの精密測定に大気ν/anti-νの正確な見積もりが要求されている
 K/π生成比やK, π, μの電荷比は直接関係する
- MCシミュレーションの大気νフラックスの不定性を削減することが必要
 - 10 GeV以上はK, π, μのフラックスによって制限されている

$$p + air \rightarrow K, \pi$$

$$\pi \rightarrow \mu + \nu_{\mu} (100\%)$$

$$K \rightarrow \mu + \nu_{\mu} (63.5\%)$$

$$\mu \rightarrow e + \nu_{e} + \nu_{\mu}$$

日本物理学会 2023春季大会 @オンライン 23pW3-11

[1] M. Honda et al. Phys. Rev. D 75, 043006 (2007)

MUSIC

• Muon Simulation Code

・ 神岡近辺の地理情報から地下で観測されるミューオンのエネルギーおよび到来方向分布を計算

エネルギーフラックス

到来方向分布

ミューオン・崩壊電子事象

観測対象

● SKタンク内で静止したミューオン + 崩壊電子 ▶ SKでは1分間に2事象程度

宇宙線ミューオン (Stop-mu)

PMTのヒットが多く、観測光量が大きい ▶ トラックと方向: PMTの時間情報と光量 ▶ 静止した場所 :ミューオンのエネルギー損失

崩壞電子 (Decay-e)

- 数十MeV程度の事象で、観測光量が小さい
 - ▶ 発生位置 : PMTの時間情報
 - ▶ 方向 : Cherenkov ringのパターン
 - ▶ エネルギー:ヒットしたPMTの数

Stop-mu事象の前後 [-5, +35] µsec内を探索

μ

ンク上部

タンク側面

事象選別とEfficiency

- ミューオン事象
 - ・ ヒット数
 - Stopしたかどうか
 - ・ Stopした位置が有効体積の中
 - ・ ミューオンの入射位置
 - ・ ミューオンの運動方向

- 崩壞電子事象
 - ・ 発生位置が有効体積の中
 - Background 除去
 - 時間差
 - 静止した位置と崩壊電子発生位置の距離
 - 50 nsec以内のヒット数

ミューオン・崩壊電子事象の時間差

Prompt event (ミューオン事象) ① ミューオン事象によるヒット時間を取得

- Sub event (崩壊電子事象) ② Prompt eventから1.3 µsec未満 ミューオン事象のヒット情報が含まれる → 事象再構成に影響を及ぼすのでCut
- ③ Prompt eventから1.3 µsec以上 崩壊電子事象によるヒット情報
 → 本研究での解析条件

崩壊電子のエネルギー分布

- 負ミューオンが酸素原子核に吸収
 - 016 → N14, N15, N16になる
 - N14, N15の場合、即座に脱励起r線を放出する (< 10 MeV)
 - ・ SKでは、電子とγ線を選別できない
 - → 崩壊電子のエネルギー分布の小さいところに γ線由来のピークが現れる
 - → エネルギーに関係する変数でCutを行う

分布の規格化 (Charge ratio)

- $R = N_{\mu^+}/N_{\mu^-}$
- $N_{data} = N_{+} + N_{-}$ N_{data} : # of events of data after cut
- $. \quad N_+ = Eff^+ \times N_{\mu^+}$
- $N_{-} = (1 \Lambda) \times Eff^{-} \times N_{\mu^{-}}$

$$N_{+} = \frac{R \times Eff^{+}}{R \times Eff^{+} + (1 - \Lambda) \times Eff^{-}} \times N_{data}$$
$$N_{-} = \frac{(1 - \Lambda) \times Eff^{-}}{R \times Eff^{+} + (1 - \Lambda) \times Eff^{-}} \times N_{data}$$
$$\rightarrow \text{ 任意のRについて} N_{+} \ge N_{-} \text{が決まる}$$

スピン偏極度に感度のある変数

21 水中での負ミューオンの振る舞い 酸素原子の電子軌道上で崩壊 原子核に落ちて、即座に脱励起ア線を放出 decay

(1)

(2)

日本物理学会 2023春季大会 @オンライン 23pW3-11

ミューオンの方向と崩壊電子の間の角度 ($\cos \theta$)

崩壊電子の運動方向はスピンの方向に依存

測定に用いる変数

Number of