

講演番号:23pW3-2

SK-Gd実験での 超新星背景ニュートリノ探索における 大気ニュートリノバックグラウンド事象の研究

酒井聖矢 (岡山大理)

他Super-Kamiokande Collaboration

2023年3月23日 日本物理学会 2023年春季大会

SK-Gd実験

- スーパーカミオカンデ (SK) にGdを導入
 - → 超新星背景ニュートリノ (DSNB) の世界初観測を目指す
- Gdの中性子捕獲で発生する~8 MeV γを同時遅延計測
 - → 中性子を伴わないバックグラウンド事象を削減 (特に大気ニュートリノの荷電カレント (CC) 反応)
 - → 遅延信号を高効率で検出
- SK-Gd実験でも識別できないバックグラウンド事象 大気ニュートリノの中性カレント準弾性散乱反応 (NCQE反応)

NCQE反応

- 大気ニュートリノ (0(10²) 0(10⁴) MeV) が酸素原子核と反応
 - → 脱励起ガンマ線 (先発信号, *O*(10) MeV) と中性子 (遅延信号) が発生
- DSNB事象との識別が困難 → NCQE事象数の正確な見積もりが重要

超新星背景ニュートリノ探索結果

• SK-Gdでの最新結果

(原田さんの発表 (23pW3-1) を参照)

- 現在は統計誤差が大きい
 - → 観測期間が増えると系統誤差が支配的に
- NCQE事象数に60 80%の系統誤差

系統誤差の要因

大気ニュートリノフラックス	•
中性子多重度	
ー次ガンマ線	
二次ガンマ線	など

ー次ガンマ線と二次ガンマ線

- ・ 先発信号 = 一次ガンマ線 (大気ニュートリノ 酸素原子核反応) + 二次ガンマ線 (核子 酸素原子核反応)
- 一次ガンマ線と二次ガンマ線の時間差が小さいため同じ事象と判別
- 各反応で生成される粒子の種類・数・エネルギーを如何に正確に理解できるかが鍵
 - → 現状は?改善すべき点は?

ニ次ガンマ線

- 再構成されたopening angle分布をデータとMCで比較
 - → (複数の二次ガンマ線による) 大角度領域でMCがデータより多い
 - → 物理モデル (核子 原子核反応モデル)を変えるとどうなる?

L. Wan *et al.*, Phys. Rev. D 99, 032005 (2019) K. Abe *et al.*, Phys. Rev. D 100, 112009 (2019)

日本物理学会 2023年春季大会

二次ガンマ線

大気ニュートリノMCを用いて

BERT (現在使用中の物理モデル)、BIC、INCL++で比較

- BICとINCL++は同様の傾向
- BERTは核子 原子核反応で発生するガンマ線の数が多い
 - → 脱励起ガンマ線のピーク構造に加えて連続成分が多く存在
 - → 二次ガンマ線の数が多い
 - → opening angle分布の大角度成分が多い?

Energy of secondary γ (NCQE, MC, true) **7**

of secondary γ (NCQE, MC, true)

日本物理学会 2023年春季大会

二次ガンマ線

- 二次ガンマ線の数が多いBERTは大角度成分が多い
- BICやINCL++を用いると大角度成分が~30%減少
- opening angle分布は物理モデルに大きく依存

SK (大気ニュートリノ)

Opening angle (NCQE, MC, reconstructed) 8

日本物理学会 2023年春季大会

L. Wan et al., Phys. Rev. D 99, 032005 (2019)

- SRNの世界初観測を実現するには大気ニュートリノバックグラウンド事象 (NCQE反応)の理解が重要
- 二次ガンマ線の数が物理モデル (核子 原子核反応モデル) に大きく依存
 - → opening angle分布が大きく変化

今後の方針

- RCNPでの二次ガンマ線の生成断面積測定結果をモデルと比較 (田野さんの発表 (23pV2-3) を参照)
 - → チューニングしてシミュレーションに導入
 - → Gd導入後のT2K実験で検証
- SKのデータ解析でさらに大気ニュートリノバックグラウンド事象を削減できるか調査

Gd導入後初のNCQE反応断面積測定に向けて

- SK-Gdのデータ解析を進める
- 物理モデルの違いを理解し、系統誤差を見積もる

二次ガンマ線

- RCNPで30, 80, 250 MeVの準単色中性子ビームを水標的に照射
 - → 二次ガンマ線のエネルギー・生成断面積を測定 (田野さんの発表 (23pV2-3) を参照)
- ・ 測定結果をモデルと比較
 - → チューニングしてシミュレーションに導入
 - → 二次ガンマ線の系統誤差の削減が期待 (一次ガンマ線も?)

日本物理学会 2023年春季大会

小汐由介, "超新星背景ニュートリノ精密観測 鍵となる素粒子・原子核実験について", 日本物理学会 2021年秋季大会 (2021)

超新星背景ニュートリノ探索

- ・ 目標:SK-Gd実験で超新星背景ニュートリノ (DSNB)の世界初観測を実現
- ・ 観測対象: $\bar{\nu}_e + p \rightarrow e^+ + n$ (8 30 MeV)

日本物理学会 2023年春季大会

J. F. Beacom and M. R.Vagins, Phys. Rev. Lett. 93, 171101 (2004)

\bar{v}_e フラックス

日本物理学会 2023年春季大会

K. Abe et al., Phys. Rev. D 104, 122002 (2021)

SK-Gd実験

日本物理学会 2023年春季大会

M. Vagins, "A Gadolinium-loaded Super-Kamiokande", Neutrino 2022 (2022)

なぜSK-Gd実験?

- 大気ニュートリノ背景事象 (Invisible µ → Decay e) が多数存在
- 陽子の中性子捕獲で発生する2.2 MeV γを同時遅延計測
 - → 背景事象の削減に成功
 - → 検出効率 ~20%

K. Abe et al., Phys. Rev. D 104, 122002 (2021)

なぜSK-Gd実験?

- Gdの熱中性子捕獲断面積は天然元素中で最大
- Gdの中性子捕獲で発生する~8 MeV γを同時遅延計測
 - → 検出効率が大幅に向上

現在 ~75% (Gd : 0.03%) 最終目標 ~90% (Gd : 0.1%)

_v_eフラックスの上限値

• SK-Gdでの最新結果

(原田さんの発表 (23pW3-1) を参照)

NCQE反応断面積測定

- SKでの最新結果
 - → 系統誤差が圧倒的に大きい

TABLE IV. Uncertainties in NCQE measurement.

	NCQE	NC non-QE
$\nu_{\rm atm}$ flux		18%
$\nu/\bar{\nu}$ ratio		5%
Cross-section		18%
Primary γ's	15%	3%
Secondary γ 's	13%	13%
Neutron multiplicity	21%	16%
Neutron energy	18%	14%
Neutron transportation	+7%	+4%
Data reduction		3%
Neutron tagging		10%
Others		0.7%

NCQE反応断面積測定

- T2Kでの最新結果
 - → 系統誤差が大きい

3 2.5 total erro $\sigma_{NCQE} \ [imes 10^{-38} \ cm^2]$ 2 stat. error 1.5 T2K Neutrino Data (Run1-9) NEUT 5.3.3 EUT 5.3.3 Flux-average 0.5 T2K FHC v Flux (Run1-9) 0 0 0.5 2.5 1.5 2 3 1 E_v [GeV] 2 1.8 9.1 م Noode [× 10³⁸ cm²] 1.7 10³⁸ cm²] 9.0 م 1.7 10³⁸ cm²] 1.6 total erro stat. erro T2K Antineutrino Data (Run1-9) NEUT 5.3.3 0.6 NEUT 5.3.3 Flux-averaged 0.4 T2K RHC v Flux (Run1-9) 0.2 0 0.5 1.5 2 2.5 3 1 E_v [GeV]

 $\langle \sigma_{\nu-\text{NCQE}} \rangle = 1.70 \pm 0.17 \text{(stat.)} \, {}^{+0.51}_{-0.38} \text{(syst.)}$

 $\langle \sigma_{\overline{\nu}-\text{NCQE}} \rangle = 0.98 \pm 0.16 \text{(stat.)} \stackrel{+0.26}{_{-0.19}} \text{(syst.)}$

FHC	<i>ν</i> -NCQE	$\bar{\nu}$ -NCQE	NC-other	CC	Beam-unrelated
Event fraction	75.0	2.0	17.8	3.7	1.5
Neutrino flux	6.7	8.6	7.3	6.4	
Neutrino interaction	3.0	3.0	8.2	16.5	
Primary- γ production	11.0	10.6	6.0	6.6	
Secondary- γ production	13.5	13.4	19.5	17.6	
Oscillation parameter				4.1	
Detector response	3.4	3.4	2.0	5.2	
Total error	19.2	19.7	23.3	26.7	3.0
RHC	ν-NCQE	<i>ī</i> -NCQE	NC-other	CC	Beam-unrelated
Event fraction	19.0	59.9	16.5	2.5	2.1
Neutrino flux	7.0	6.4	7.0	6.5	•••
Neutrino interaction	3.0	3.0	10.8	38.2	
Primary- γ production	12.2	11.4	3.5	0.5	
Secondary- γ production	13.6	13.1	19.3	21.4	
Oscillation parameter				3.1	
Detector response	3.4	3.4	2.0	5.2	
Total error	20.1	19.0	23.4	44.7	3.9

BERT

Bertini-style Cascade Model

- A classical (non-quantum mechanical) cascade
 - average solution of a particle traveling through a medium (Boltzmann equation)
 - no scattering matrix calculated
 - can be traced back to some of the earliest codes (1960s)
- Core code:
 - elementary particle collisions with individual protons and neutrons: free space cross sections used to generate secondaries
 - cascade in nuclear medium
 - pre-equilibrium and equilibrium decay of residual nucleus
 - target nucleus built of three concentric shells

Binary Cascade Model

- Modeling sequence similar to Bertini, except
 - it's a time-dependent model
 - hadron-nucleon collisions handled by forming resonances which then decay according to their quantum numbers
 - particles follow curved trajectories in smooth nuclear potential
- Binary cascade is currently used for incident p, n and π
 - valid for incident p, n from 0 to 10 GeV
 - valid for incident $\pi^{\scriptscriptstyle +}$, $\pi^{\scriptscriptstyle -}$ from 0 to 1.3 GeV
- A variant of the model, G4BinaryLightIonReaction, is valid for incident ions up to A = 12 (or higher if target has A < 12)

23

INCL++

INCL++ Cascade Model

- Model elements
 - time-dependent model
 - smooth Woods-Saxon or harmonic oscillator potential
 - particles travel in straight lines through potential
 - delta resonance formation and decay (like Binary cascade)
- Valid for incident p, n and π , d, t, ³He, α from 150 MeV to 10 GeV
 - also works for projectiles up to A = 12
 - targets must be 11 < A < 239
 - ablation model (ABLA) can be used to de-excite nucleus
- Used successfully in spallation studies
 - also expected to be good in medical applications

26

T2Kで中性子多重度を測定

→ データがMC (BERT) より~34%少ない

• BICやINCL++の場合はどうなる?

中性子多重度

• T2Kで中性子多重度を測定

→ データがMC (BERT) より~34%少ない

- BICやINCL++の場合はどうなる?
 - → データとの差を埋められない
 - → 実験データを取得してより精密なモデルを構築し シミュレーションに導入する必要がある

# of neutron of	capture
-----------------	---------

	BERT	BIC	INCL++
# of neutron capture	81,567	56,267	55,130
# of event	37,898	30,799	31,047
# of neutron capture / event	2.152	1.827	1.776
Difference from BERT	-	-15.1%	-17.5%

日本物理学会 2023年春季大会

CCQE反応

CCQE反応による中性子多重度

Figure 1.8: An example of neutron multiplicity using true CCQE ν (cyan) and $\bar{\nu}$ (orange) interactions in water. The left, middle, right correspond to neutron multiplicities after primary interaction, after FSI, and after SI, respectively. T2K beam neutrino flux is assumed.

- 3つの準位 (p_{1/2}, p_{3/2}, s_{1/2})
 - → どの準位の核子が弾かれるかによって生成粒子が変化

ー次ガンマ線

$p_{1/2}$ の核子が弾かれた場合

- 残留原子核は基底状態 (¹⁵N, ¹⁵O)
 - → 核子が1個だけ発生

ー次ガンマ線

*p*_{3/2}の核子が弾かれた場合

- ・ 残留原子核は励起状態 (¹⁵N*, ¹⁵O*)
 - → 核子・脱励起ガンマ線が発生

29

ー次ガンマ線

*s*_{1/2}の核子が弾かれた場合

• 核子・脱励起ガンマ線が発生

日本物理学会 2023年春季大会

ー次ガンマ線

$s_{1/2}$ の核子が弾かれた場合

小汐由介, "超新星背景ニュートリノ精密観測 鍵となる素粒子・原子核実験について", 日本物理学会 2021年秋季大会 (2021) K. Kobayashi *et al.*, arXiv:nucl-ex/0604006 (2006)

日本物理学会 2023年春季大会

	Energ	y level	γ -ray energy	
Decay scheme	MeV	(J^{π})	MeV (ratio)	$N(k)/N_{ m tot}$
$^{13}\mathrm{C}+d$	3.09 ($1/2^{+})$	3.09 (100%)	3.0%
$^{13}C+d$	3.68 ($3/2^+)$	3.68 (99.3%)	4.2%
$^{13}\mathrm{C}+d$	3.85 ($5/2^+)$	3.09 (1.20%)	4.6%
			3.68(36.3%)	
			3.85~(62.5%)	
$^{12}C+t$	4.44 ($2^+)$	4.44 (100%)	5.8%
$^{14}N+n$	4.92 ($0^{-})$	4.92~(97%)	5.2%
$^{14}\mathrm{N}{+}n$	5.11 (2)	$2^{-})$	5.11 (79.9%)	0.0%
$^{14}\mathrm{N}{+}n$	5.69 ($1^{-})$	3.38 (63.9%)	4.5%
			5.69(36.1%)	
$^{14}\mathrm{N}{+}n$	5.83 ($3^{-})$	5.11 (62.9%)	0.54%
			5.83(21.3%)	
$^{14}\mathrm{N}{+}n$	6.20 ($1^{+})$	3.89(76.9%)	0.0%
			6.20(23.1%)	
$^{14}\mathrm{N}{+}n$	6.45 ($3^{+})$	$5.11 \ (8.1\%)$	2.8%
			6.44 (70.1%)	
$^{14}N+n$	7.03 (2)	$2^+)$	7.03~(98.6%)	(6.7%)
$^{14}C+p$	6.09 ($1^{-})$	6.09~(100%)	(0.0%)
$^{14}C+p$	6.59 ($0^{+})$	6.09 (98.9%)	(0.0%)
$^{14}\text{C}+p$	6.73 ($3^{-})$	6.09(3.6%)	0.43%
			6.73(96.4%)	
$^{14}\mathrm{C}+p$	6.90 ($0^{-})$	6.09 (100%)	(0.0%)
$^{14}\mathrm{C}+p$	7.01 ($2^+)$	6.09 (1.4%)	(6.7%)
			7.01 (98.6%)	
$^{14}\mathrm{C}+p$	7.34 ($2^{-})$	6.09 (49.0%)	5.7%
		-	6.73 (34.3%)	
			7.34 (16.7%)	

ー次ガンマ線

- ニュートリノがある準位の核子を弾く確率に大きな不定性
 - → othersをどの準位に含めるかで核子の個数が大きく変化
 - → 二次ガンマ線・中性子多重度に影響
- 核子の準位によらずガンマ線と中性子を包括的に測定できる実験はできないか?
 - → 理研で酸素原子核ビームを水素標的に当てる実験を計画中

State	Probability
<i>p</i> _{1/2}	15.80%
p _{3/2}	35.15%
<i>s</i> _{1/2}	10.55%
others	38.50%

- L. Wan *et al.*, Phys. Rev. D 99, 032005 (2019)
- 2 K. Abe *et al.*, Phys. Rev. D 100, 112009 (2019)
- 3 小汐由介, "超新星背景ニュートリノ精密観測 鍵となる素粒子・原子核実験について", 日本物理学会 2021年秋季大会 (2021)
- <u>4</u> J. F. Beacom and M. R.Vagins, Phys. Rev. Lett. 93, 171101 (2004)
- 5 K. Abe *et al.*, Phys. Rev. D 104, 122002 (2021)
- 6 M. Vagins, "A Gadolinium-loaded Super-Kamiokande", Neutrino 2022 (2022)
- **D.** Wright, "Hadronic Physics I", Geant4 Tutorial at Sao Paulo (2019)
- 8 R. Akutsu, Ph.D. Thesis, The University of Tokyo (2019)
- 9 Y. Koshio, "NEUT for NC elastic" (2021)
- 10 K. Kobayashi *et al.*, arXiv:nucl-ex/0604006 (2006)