

スーパーカミオカンデにおけるGeant4ベースの シミュレーションを用いた水中での光伝播モデルの研究

多田智昭(岡大理)

他Super-Kamiokande Collaboration

2022年9月7日 日本物理学会 2022年秋季大会 @岡山理科大学

1. スーパーカミオカンデ(SK)

2. 研究背景

3. 研究目的

4. 研究方法

5. 結果

6. 考察

7. まとめ

スーパーカミオカンデ(SK)

検出器

- ・ 大型水チェレンコフ検出器
- ・岐阜県飛騨市神岡町の神岡鉱山地下約1,000m

構造

- ・約5万トンの超純水
 - 2020年7月からはGd溶液 (SK-Gd実験)
- 光電子増倍管(PMT):約11,000本設置

検出原理

• 荷電粒子から放出されるチェレンコフ光を検出

事象再構成

・ Hitの時間情報や電荷情報を用いる

SKのシミュレーション(MC)

- SKDETSIM
 - ・ SK観測開始時から現在も使用
- SKG4
 - ・ SK-Gd実験で使用するため新たに構築

水による光子の減衰

- ・ リングの周りに散らばったHit (散乱光子)
- 事象再構成に影響を与える

→ MCによる水の減衰長の理解が必要不可欠

	SKDETSIM	SKG4
ツール	GEANT3	Geant4
言語	FORTRAN	C++
物理モデル	更新終了	最新
Super-Kamiokande V Rum 999999 Sub 0 Event 19 2:03:27:05:55:50 Inner: 3337 hits, 8897 pe Outer: 0 hits, 0 pe Trigger: 0:1000007 D_wall: 1690.0 cm Evis: 0.0 MeV MeV Mereconstructure * 28,7 * 23,3-26,7 * 20,2-23,3 * 12,2-10,7 * 0,2-0,7 * 2,2-33,3 * 1,3-2,2 * 0,7-1,3 * 1,3-2,2 * 0,7-1,3 * 2,2-3,3 * 1,3-2,2 * 0,7-1,3 * 1,3-2,2 * 1		1700 1800 1000 1000 1000 1000 1000 1000 1000 1000 1000 1500 1000 1500 1000 1500 1000 1500 1000 1500 1000 1500 1000 1500 1000 1500

光の減衰

$$I(\lambda) = I_0(\lambda)e^{-\frac{1}{L(\lambda)}}$$

MCでの水中における光の減衰長
 $\left[L(\lambda) = \frac{1}{\alpha_{abs}(\lambda) + \alpha_{sym}(\lambda) + \alpha_{asym}(\lambda)} [m]\right]$
水の吸収散乱振幅 (確率のようなもの)
 $I_{abs}(\lambda) : 吸収 [1/m]$
 $I_{abs}(\lambda) : (前後)等方散乱 (レイリー散乱) [1/m]$

- ・光子の波長に依存した関数
- SKで経験的に決められた関数

水の吸収散乱パラメータ

. P₀~P₈の定数

 α_{a}

 α_{s}

 α_{a}

2009年に決定した吸収散乱振幅の関数 NIM in Physics Research A 737 (2014) 253-272

$$\alpha_{abs}(\lambda) = P_0 \times \frac{P_1}{\lambda^4} + P_0 \times P_2 \times 0.0279 \times (\frac{\lambda}{500})^{P_3} [1/m]$$

$$\alpha_{sym}(\lambda) = \frac{P_4}{\lambda^4} \times (1.0 + \frac{P_5}{\lambda^2}) [1/m]$$

$$\alpha_{asym}(\lambda) = P_6 \times (1.0 + \frac{P_7}{\lambda^4} \times (\lambda - P_8)^2) [1/m]$$

目的 SKG4でSK-Gd期間の水の吸収散乱パラメータを最適化する

方法

- ・ SKのタンク内に常設された<u>レーザー照射装置</u>で取得したデータ
- 同様のことを行うシミュレーション

→ <u>データとMCのHitの時間分布</u>を評価し、吸収散乱パラメータを最適化

今回は<u>最適化されたSKDETSIM</u>に合うように SKG4の吸収散乱パラメータを最適化する

Hitの時間分布

T-ToF分布

- ・ ToF: 右図の点線を光子が進む時間
 - ・ 始点:レーザー照射装置のほぼ真下のPMT
 - 終点:光子のHitしたPMT
- HitしたPMTの位置で分類
 - Top
 - ・ Barrelは<u>5分割</u>
 - Bottomは<u>使用しない</u>
 → 計6つに分類
- 散乱光子と反射光子を識別
- ・ 本研究 → 散乱光子のみに注目

400

200

600

800 1000 1200 1400 1600

1800

2000

T-ToF [ns]

ToF

評価方法 (x^2/ndf)

x^2/ndf

- 散乱光子の時間領域を使用
- ・ PMTの分類毎に以下の式で算出
 - nbin: 散乱光子の領域のbin数
- χ^2/ndfが最も小さくなるように3つの
 吸収散乱振幅の組を決める

$$\chi^{2}/ndf = \frac{1}{nbin} \sum_{i=1}^{nbin} \frac{(BinContent_{SKDETSIM} - BinContent_{SKG4})}{BinError_{SKDETSIM}^{2} + BinError_{SKG4}^{2}}$$

- ・ 吸収と等方散乱はSKG4とSKDETSIMでほとんど違いはない
 → 全く異なるMCで同等の結果
- ・非等方散乱は全ての波長領域でSKG4が大きい

吸収散乱振幅の関数を変えたときのSKG4の振る舞いを比較する

- ①: 点線の関数を用いたSKG4の時間分布
- ②:実線の関数を用いたSKG4の時間分布

→ タンクの下にいく(照射装置から離れる)ほど、時間分布の比に違いが現れる → Barrel4では、特に早い時間に顕著に違いが見られる

非等方散乱の関数の違いが効いている → SKG4は実線の方がより適している

散乱角度分布

散乱後の角度分布

- ・ 等方散乱
 - ・角度分布は同じ
- 非等方散乱
 - ・ SKG4は僅かに横や後方もある
 - ・ 現実的なMie散乱のモデル
 - SKDETSIMは前方のみ
 - → 散乱振幅の関数に違いを生む
 → SKG4の方がより現実的

日本物理学会 @岡山理科大学 7pA125-7

研究背景・目的

- ・ 水の吸収散乱による光子の減衰が事象再構成に影響を与える
- ・ MCによる水の減衰長の理解が必要
 - → SKG4における水の吸収散乱パラメータの最適化 (波長依存の関数)

研究方法

- ・データから最適化されたSKDETSIMとSKG4の時間分布を評価する
 - ・時間分布 → T-ToF分布
 - ・ 評価方法 → 散乱光子の領域での χ²/ndf

結果

- ・ 吸収と等方散乱の振幅関数はほぼ一致
 - → 全く異なるMCで同等の結果
- ・ 非等方散乱は全波長で不一致 (SKG4が大きい)
 - → 角度分布に違いが原因

Back up

SK-Gd実験

超新星背景ニュートリノ(SRN)の世界初観測を目指す実験

- SKの超純水中に硫酸Gdを溶解
 - ・2020年7月に質量濃度約0.01%
 - ・ 2022年6月に約0.03%に増加
- ・IBD事象の中性子を同定
 - Gdのn捕獲によるγ線
 - ・約75%の確率(0.03%の場合)

→ <u>詳しくは池田さんのシンポジウム</u>(10pS2-6)

SKのシミュレーション(MC)

SKDETSIM

- ・ SKの観測開始時から使用
- ・長年詳細にtuningされている
 → Dataをよく再現している
- ・物理モデルや言語が最新でない
 → 管理・維持が難しい
- ・ 熱中性子の輸送
- ・ Gdのn捕獲からのγ線放出
 → SK-Gdに向けて使用が難しい

SKG4

- ・ 上記の問題を解決するために近年開発
- ・ 詳細な性能評価が最終段階

	SKDETSIM	SKG4
ツール	GEANT3	Geant4
言語	FORTRAN	C++
物理モデル	更新終了	最新

時間分布の規格化

Q weighted T-ToF分布

• ToF:右図の点線を光子が進む時間

Normalizing factor

- ・ Off-time 領域:黒線の間
 - ・ BinあたりのDark NoiseのQを算出
- ・ On-time 領域:赤線の間
 - ・ 全QからDark Q (Grayの四角) を減算
 - → レーザーによる全電荷
 - → それぞれの時間分布を規格化

評価方法 (x^2/ndf)

x^2/ndf

- 散乱光子の領域を使用:青点線の間
- ・ PMTの分類毎に以下の式で算出
 - nbin: 散乱光子の領域のbin数

 $\chi^{2}/ndf = \frac{1}{nbin} \sum_{i=1}^{nbin} \frac{(BinContent_{SKDETSIM} - BinContent_{SKG4})^{2}}{BinError_{SKDETSIM}^{2} + BinError_{SKG4}^{2}}$

Combined *x***^2/ndf** ・ *x*^2/ndfを以下の式で合体

Combined :
$$\chi^2 / ndf = \frac{\chi_{top}^2 + \chi_{b1}^2 + \chi_{b2}^2 + \chi_{b3}^2 + \chi_{b4}^2 + \chi_{b5}^2}{ndf_{top} + ndf_{b1} + ndf_{b2} + ndf_{b3} + ndf_{b4} + ndf_{b4}}$$

・ <u>上の値が最も小さくなるように吸収散乱パラメータ</u> <u>の組を決める</u>

→ 波長依存の関数(p.4)でFitting

水の吸収散乱パラメータ

	SKG4	SKDETSIM
P0	0.5966	0.658048
Р1	51888800	44315300
P2	1.06522	1.18114
Р3	14.1858	15.3261
P4	113817000	112401000
P5	57910.8	67368.4
P6	2.26159E-04	1.87781E-04
Ρ7	17.126	318720
P8	44862.2	613.511

Water coefficient formula

$$\alpha_{abs}(\lambda) = P_0 \times \frac{P_1}{\lambda^4} + P_0 \times P_2 \times 0.0279 \times (\frac{\lambda}{500})^{P_3}$$

$$\alpha_{sym}(\lambda) = \frac{P_4}{\lambda^4} \times (1.0 + \frac{P_5}{\lambda^2})$$

$$\alpha_{asym}(\lambda) = P_6 \times (1.0 + \frac{P_7}{\lambda^4} \times (\lambda - P_8)^2)$$

日本物理学会 @岡山理科大学 7pA125-7

- ①:<mark>点線</mark>の関数を用いたSKG4の時間分布
- ②:実線の関数を用いたSKG4の時間分布

- ①:<mark>点線</mark>の関数を用いたSKG4の時間分布
- ②:実線の関数を用いたSKG4の時間分布

- ①:点線の関数を用いたSKG4の時間分布
- ②:実線の関数を用いたSKG4の時間分布

- ①:<mark>点線</mark>の関数を用いたSKG4の時間分布
- ②:実線の関数を用いたSKG4の時間分布

- ①:<mark>点線</mark>の関数を用いたSKG4の時間分布
- ②:実線の関数を用いたSKG4の時間分布

今後について

タンクの水質の上下非対称性

- Z = -11m以下は温度一定
 - 水が常に対流している
- Z = -11m以上は温度が上昇
 最大で0.2°Cの違い
- ・タンクの水は下部から供給、上部で回収
 - 上部ほど水質が悪い
- → MCによる水質の上下非対称性の理解が必要 Top Bottom Asymmetry : TBA

・ Ni-Cf線源による測定で見積もる

→ 詳しくは重田さんの発表(7aA125-5)

タンク内部の水温の位置依存性 NIM in Physics Research A 737 (2014) 253-272

タンク内部の配管の様子と水の流量

