

Core collapse supernova as an arena of physics

Core Collapse Supernovae

- 重力崩壊型超新星爆発では、自然界における
 4つの基本的な相互作用が顔をだす。
 - ▶ 重力相互作用
 - ✓ 一般相対性理論
 - ▶ 電磁相互作用
 - ✓ 磁場・プラズマ流体の力学
 - ▶ 弱い相互作用
 - ✓ ニュートリノの生成・反応
 - ▶ 強い相互作用
 - ✓ 核物質状態方程式

Core Collapse Supernovae

重力崩壊型超新星爆発では、自然界における
 4つの基本的な相互作用が顔をだす。

理のオールスター

- ▶ 重力相互作用
 - ✓ 一般相対性理論
- ▶ 電磁相互作用
 - ✓ 磁場・プラズマ流体の力学
- > 弱い相互作用
 - ✓ ニュートリノの生成・反応
- > 強い相互作用
 - ✓ 核物質状態方程式

超新星爆発 ~壮絶なる星の死

- 約10M_☉以上の質量を持つ 恒星が死にゆく姿。
- 炭素や鉄といった重元素を 星間空間にまき散らす。
- ・残骸は星雲となり、あとに
 中性子星を残す。

星の進化のシナリオ

• 星内部でより質量の大きい元素を合成していく。

恒星の進化

最安定原子核の鉄まで生成されると、自己重力
 を支えるエネルギー源がなくなる。

→ 自己重力不安定、重力崩壊の開始

高密度天体の内部で起こること

中心密度 ρ_c が上昇。
 国
 国
 二
 電子の Fermi エネルギー

$$\varepsilon_{\rm F} \sim 30 \,\,\mathrm{MeV} \left(\frac{n_e}{10^{35} \mathrm{cm}^{-3}}\right)^{1/3}$$

ニュートリノ

を放出

・陽子による電子の吸収が起こる

 $mc^2 = 938 \text{ MeV} \quad 0.5 \text{ MeV} \quad 939 \text{ MeV}$

$p + e \rightarrow n + v_e$ 中性子星形成へ

(注) ニュートリノは、星内部が高温になることによる "熱放射"としても放出される。

超新星爆発のシナリオ

- 中心が核密度を超えると核力芯の斥力で反跳
- ・崩壊の反跳から爆発に至る詳細は未解明

超新星爆発のエネルギー

重力ポテンシャル

$$E \sim \frac{GM_{\rm NS}^2}{R_{\rm NS}} \sim 4 \times 10^{53} {\rm erg} \left(\frac{M_{\rm NS}}{1.4M_{\odot}}\right)^2 \left(\frac{12 {\rm km}}{R_{\rm NS}}\right)$$

- ・エネルギー分配
 - 99%, *O*(10⁵³ erg) : ニュートリノ
 - 1%, O(10⁵¹ erg): 爆発の運動エネルギー
 - 0.01%, O(10⁴⁹ erg): 電磁波
- ・如何にして、ニュートリノのエネルギーを爆発の 運動エネルギーに転化するか? ← 難題

推定メカニズム

- 衝撃波のエネルギー
 は鉄などの原子核の
 分解で消費される。
- 中心部から飛んでくる
 ニュートリノにより衝
 撃波面が過熱される。
- 対流や衝撃波面の振動 (SASI) が衝撃波の伝播・爆発を後押しする。

Adapted from B. Müller

核物質の「状態方程式」とは

- ・核物質の(自由)エネルギーが分かれば、圧力 などの熱力学量も分かる。
 - → 広い意味で「状態方程式」と呼ぶ
 - たとえば、ゼロ温度の場合: $p = n^2 \frac{\partial w}{\partial n}$
 - 反応が平衡にあれば、組成も含む。

・ 圧力が分かると、星の
 内部構造が分かる。

Özel & Freire, ARAA **54** (2016)

Özel & Freire, ARAA 54 (2016)

中性子星 or ブラックホール

- ・中性子星では核力と自己重力が つりあって平衡形状にある。
- 核力で支えられる質量には上限がある。

(斥力)

核力

上限を超えるとブラックホールになる。

ひっそりと死んでゆく星

- 爆発に失敗した星 = Failed supernovae
- その場合も重力崩壊ののちー旦、バウンス
- 追って降着してくる物質に押しつぶされる形で
 ブラックホールを形成する。
 - →この間、1秒程度ニュートリノを放出する。

超新星ニュートリノと状態方程式

- 中性子星が残される場合
 - \rightarrow 総放出エネルギー $E \sim \frac{GM_{NS}^2}{R_{NS}}$
 - 質量が大きいほど総エネルギーが大きい
 - 半径が小さいほど総エネルギーが大きい
- ・ブラックホールが残される場合

→ 最大質量を超えるまで質量降着が続く

- 最大質量が大きいほど総エネルギーが大きい

例題 (1)

・中性子星が残される場合、超新星ニュートリノの総放出エネルギーが大きいのは?

例題 (2)

ブラックホールが残される場合、超新星ニュー
 トリノの総放出エネルギーが大きいのは?

超新星ニュートリノの時間変化

崩壞開始

原始中性子星

Nakazato+ (2013)

①中性子化バースト

- 衝撃波が原子核を破壊する。
- ・陽子による電子捕獲により v_e が放出される。
 → deleptonization

 \rightarrow **n** + ν

Shock

①中性子化バースト

- 衝撃波が原子核を破壊する。
- ・陽子による電子捕獲により v_e が放出される。
 → deleptonization

③ 冷却フェーズ

原始中性子星

- ・衝撃波が復活して
 外側に伝播すると、
 物質降着がやむ。
- それにより、原始中
 性子星の加熱も止
 まる。
- ・ニュートリノ放出量
 や平均エネルギー
 ✓ が下がる。

原始中性子星冷却の概略図

ブラックホール形成からのニュートリノ

・最大質量を超えるまで、コアの加熱が続く。

→ 通常の超新星よりも高エネルギーのニュートリ ノを放出

超新星(13M_☉)と重いブラックホール形成(30M_☉)からのニュートリノ放出

原始中性子星冷却の数値計算

ニュートリノ拡散近似による星の進化計算。

- ・質量が大きいほど、また、半径が小さいほど、
 ニュートリノ放出のタイムスケールが長い。
- Togashi EOS は平均エネルギーが高い。
 → 低密度領域の組成の違いにより温度が高い。

・質量が大きいほど、また、半径が小さいほど、 ニュートリノ放出のタイムスケールが長い。

Togashi EOS は平均エネルギーが高い。
 → 低密度領域の組成の違いにより温度が高い。

原始中性子星冷却時間の理論(1)

• Kelvin-Hermholtz timescale

- ・中性子星の質量 m, 半径 r として、以下を仮定。 1. 光度は表面積に比例する: $L_* \propto r^2$
 - 2. 一般相対論による時間遅れ
 - 3. $|E_g| \rightarrow E_b$ (中性子星の重力束縛エネルギー)

$$\tau_{\rm cool} \propto \frac{E_b}{r^2 \sqrt{1 - \frac{2Gm}{rc^2}}}$$

原始中性子星冷却時間の理論(2)

• 中性子星の束縛エネルギーに関する経験式

Lattimer & Prakash, ApJ 550 (2001)

$$\frac{E_b}{mc^2} = \frac{0.6 \times \frac{Gm}{rc^2}}{1 - 0.5 \times \frac{Gm}{rc^2}}$$

✓ c.f. ニュートン力学で一様密度の場合:
$$|E_g| = \frac{3Gm^2}{5r}$$

・よって、

$$m^2$$

$$\tau_{\rm cool} \propto \frac{1}{r^3 \left(1 - 0.5 \times \frac{Gm}{rc^2}\right) \sqrt{1 - \frac{2Gm}{rc^2}}}$$

理論とシミュレーションの比較 $\tau_{\rm cool} = \tau^* \left(\frac{m}{1.4M_{\odot}}\right)^2 \left(\frac{r}{10 \text{ km}}\right)^{-3} \frac{1}{(1-0.5\beta)\sqrt{1-2\beta}}, \quad \beta = \frac{Gm}{rc^2}$ f(m,r)

✓ シミュレーション結果は理論と良く一致する。
 ✓ 33.7 s ≤ τ* ≤ 37.0 s (effective mass の不定性)

- ・ 質量が大きいほど、また、半径が小さいほど、
 ニュートリノ放出のタイムスケールが長い。
- Togashi EOS は平均エネルギーが高い。
 → 低密度領域の組成の違いにより温度が高い。

相図における非一様相の分布

Togashi EOS では高温・高密度領域まで非一様相が広がっている。

→ 非一様相にひっかかると冷却が遅くなり、 表面付近も高温のままキープされる。

散乱波が干渉するということ

- ・ 散乱によりニュートリノの波数が $\vec{k} \rightarrow \vec{k'}$ となり、 原子核の状態は不変とする。
 - $\rightarrow 原子核を核子のポテンシャルの和で表す。$ $<math>V(\vec{r}) = \sum_{i=1}^{A} v \delta(\vec{r} - \vec{r_i})$
- Fermi の黄金律: $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \propto \left| \left\langle \vec{k'} \mid V(\vec{r}) \mid \vec{k} \right\rangle \right|^2$
- ニュートリノの波動関数を平面波とすると

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \propto \left| \int_{i=1}^{A} v e^{-i\vec{k'}\cdot\vec{r}} \delta(\vec{r}-\vec{r_i}) e^{\vec{k}\cdot\vec{r}} \, d\vec{r}^3 \right|^2$

続・散乱波が干渉するということ

$$\frac{d\sigma}{d\Omega} \propto \left|\sum_{i=1}^{A} v e^{-i\vec{q}\cdot\vec{r_i}}\right|^2 = v^2 \sum_{i,j}^{A} e^{i\vec{q}\cdot(\vec{r_i}-\vec{r_j})}$$

$$= v^2 A + v^2 \sum_{i\neq j}^{A} e^{i\vec{q}\cdot(\vec{r_i}-\vec{r_j})}$$

 $\rightarrow \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \propto v^2 A + v^2 \frac{A(A-1)}{2} \propto A^2$

表面付近の原子核の大きさ

- Togashi EOS は非一様相が大きいだけでなく、
 原子核の質量数が大きい。
 - → 原子核によるニュートリノ散乱のため、原始中性子 星の冷却過程に影響が現れたと考えられる。

Neutrino Energy Sphere (1)

- エネルギー交換しないニュートリノ原子核散乱により、なぜ熱化が enhance されたか?
 - 全反応考慮したニュートリノ平均自由行程: λ_{tot}
 - エネルギー交換する反応のみの平均自由行程: λ_{th}
 - ニュートリノがエネルギー交換反応を1回起こすまで に進む距離: *ℓ*
 - その間に起こる全反応回数: N

$$\ell = \sqrt{N\lambda_{tot}}$$
(ランダムウォーク)

- 実際のニュートリノが移動した行程: $N\lambda_{tot}$ → エネルギー交換する平均自由行程 λ_{th} に対応 $N = \frac{\lambda_{th}}{\lambda_{tot}} \implies \ell = \sqrt{\lambda_{th}\lambda_{tot}}$
- 熱平衡が切れる半径: R_{th}

$$\int_{R_{\rm th}}^{R_{\rm s}} \frac{\mathrm{d}r}{\ell} = \frac{2}{3} \implies \int_{R_{\rm th}}^{R_{\rm s}} \frac{\mathrm{d}r}{\sqrt{\lambda_{\rm th}\lambda_{\rm tot}}} = \frac{2}{3}$$

Neutrino Energy Sphere (3)

熱平衡が切れる半径: R_{th}

$$\int_{R_{\rm th}}^{R_{\rm s}} \frac{\mathrm{d}r}{\sqrt{\lambda_{\rm th}\lambda_{\rm tot}}} = \frac{2}{3}$$

→ ニュートリノ原子核散乱により ^λtot</sub> が小さくなれば、 熱平衡が切れる位置は、より外側に移動する。

そもそも・・・

- Togashi EOS では高温・高密度領域まで非一様相が広がっている。
 - → なぜ、Togashi EOS は非一様になりやすい のか?

原子核物理学のおさらい

- 結合エネルギーの飽和性
 - 1核子あたりの結合エネルギーは核種によらず、 ほぼ一定
- ・密度の飽和性
 - 1核子の占める体積は 核種によらず、ほぼ一定
- 対称エネルギー
 - 中性子と陽子が同数の
 核種が安定(クーロンエ
 ネルギーは除く)

ー様核物質では

核密度付近での物質のエネルギ-

高密度天体内部では、中性子過剰になる。

Energy per nucleon [MeV]

非一様相:原子核の混合

Figure by Y. Takehara

- 低温・低密度領域では、
 原子核が存在する。
- → 核子の数密度分布が、
 非一様になる。

→ 非一様相

超新星物質は、原子核、
 中性子、陽子、電子から
 構成される。
 原子核

注) 自由な中性子、陽子は中性子星クラストの場合の、 中性子ドリップに対応。

状態方程式どうしの比較

EOS	Togashi	LS220	Shen
K [MeV]	245	220	281
S ₀ [MeV]	30.0	28.6	36.9
L [MeV]	35	73.8	111
ρ ₀ [10 ¹⁴ g/cm ³]	2.66	2.57	2.41
<i>w</i> ₀ [MeV]	16.1	16.0	16.3

Togashi は Symmetry gradient, L, が小さい。
 → sub-nuclear での対称エネルギーが大きい。

様核物質のエネルギー

- 中性子過剰な場合に差がみられる。
- E/A [MeV]

有限温度核物質の相図

 subnuclear density で 14 Variational Shen EOS 温度が数 MeV 以下の 12 $X_{\alpha} > 10$ Y_e = 0.5 10 $X_A = 0$ [[MeV] 領域で、非一様相が 8 $X_{\alpha} < 10^{-4}$ $X_{\rm A} = 0$ 現れる。 $X_\alpha < 10$ $X_{\rm A} = 0$ 電子フラクションが低い ほど、転移密度・温度は 14 Variational Shen EOS 12 低くなる。 10inhomogeneous [MeV] 非一様領域の大きさは $X_a < 10^ X_{\alpha} < 10^{-1}$ $X_A =$ $X_{\rm A} = 0$ 核物質の性質の違いも $Y_{p} = 0.01$ 反映される。 8 1012 14 6 $\log_{10}(\rho_{\rm B}) [g/cm]$

質量数・陽子数の比較

- Shen EOS と比べて、原子核 が高密度まで分布する。
- → 低密度領域で、今回の EOS
 は中性子過剰物質のエネル
 ギーが高い(L の値が小さい)
 ため、一様物質に転移しにくい。
- Shen EOS と比べて、質量数・
 陽子数が大きい。
- → これも L の値が小さいことに 対応。(Oyamatsu & lida 2007)

まとめ (1)

ニュートリノの総エネルギーが大きくなるのは、
 (中性子星の場合)

→ 質量が大きい場合・半径が小さい場合

(ブラックホールの場合)→ 中性子星の最大質量が大きい場合

・ニュートリノの平均エネルギーが高くなるのは、
 → ブラックホールが残る場合

まとめ (2)

・冷却時間スケール(③-2)が長くなるのは、

→ 質量が大きい場合・半径が小さい場合

・ニュートリノの平均エネルギーが高くなるのは、
 → 状態方程式の L の値が小さい場合

