# SK-Gd実験における 中性子同定手法の開発と 超新星背景ニュートリノ探索 <sub>原田 将之(岡山大学)</sub> 8月20,21日 第一回瀬戸内ニュートリノ研究会

(論文が出ました)

Search for astrophysical electron antineutrinos in Super-Kamiokande with 0.01wt% gadolinium-loaded water The Astrophysical Jounrnal Letters (accepted)

#### この前論文が出ました

https://doi.org/10.3847/2041-8213/acdc9e THE ASTROPHYSICAL JOURNAL LETTERS, 951:L27 (8pp), 2023 July 10 © 2023. The Author(s). Published by the American Astronomical Society. OPEN ACCESS Search for Astrophysical Electron Antineutrinos in Super-Kamiokande with 0.01% Gadolinium-loaded Water M. Harada<sup>1</sup>, K. Abe<sup>2,3</sup>, C. Bronner<sup>2</sup>, Y. Hayato<sup>2,3</sup>, K. Hiraide<sup>2,3</sup>, K. Hosokawa<sup>2</sup>, K. Ieki<sup>2,3</sup>, M. Ikeda<sup>2,3</sup>, J. Kameda<sup>2,3</sup>, Y. Kanemura<sup>2</sup>, R. Kaneshima<sup>2</sup>, Y. Kashiwagi<sup>2</sup>, Y. Kataoka<sup>2,3</sup>, S. Miki<sup>2</sup>, S. Mine<sup>2,4</sup>, M. Miura<sup>2,3</sup>, S. Moriyama<sup>2,3</sup>, Y. Nakano<sup>2</sup>, M. Nakahata<sup>2,3</sup>, S. Nakayama<sup>2,3</sup>, Y. Noguchi<sup>2</sup>, K. Okamoto<sup>2</sup>, K. Sato<sup>2</sup>, H. Sekiya<sup>2,3</sup>, H. Shiba<sup>2</sup>, K. Shimizu<sup>2</sup>, M. Shiozawa<sup>2,3</sup>, Y. Sonoda<sup>2</sup>, Y. Suzuki<sup>2</sup>, A. Takeda<sup>2,3</sup>, Y. Takemoto<sup>2,3</sup>, A. Takenaka<sup>2</sup>, H. Tanaka<sup>2,3</sup> S. Watanabe<sup>2</sup>, T. Yano<sup>2</sup>, S. Han<sup>5</sup>, T. Kajita<sup>3,5,6</sup>, K. Okumura<sup>3,5</sup>, T. Tashiro<sup>5</sup>, T. Tomiya<sup>5</sup>, X. Wang<sup>5</sup>, S. Yoshida<sup>5</sup>, G. D. Megias<sup>7</sup>, P. Fernandez<sup>8</sup>, L. Labarga<sup>8</sup>, N. Ospina<sup>8</sup>, B. Zaldivar<sup>8</sup>, B. W. Pointon<sup>9,10</sup>, E. Kearns<sup>3,11</sup>, J. L. Raaf<sup>11</sup> L. Wan<sup>11</sup>, T. Wester<sup>11</sup>, J. Bian<sup>4</sup>, N. J. Griskevich<sup>4</sup>, S. Locke<sup>4</sup>, M. B. Smy<sup>3,4</sup>, H. W. Sobel<sup>3,4</sup>, V. Takhistov<sup>4,12</sup>, A. Yankelevich<sup>4</sup>, J. Hill<sup>13</sup>, S. H. Lee<sup>14</sup>, D. H. Moon<sup>14</sup>, R. G. Park<sup>14</sup>, B. Bodur<sup>15</sup>, K. Scholberg<sup>3,15</sup>, C. W. Walter<sup>3,15</sup> A. Beauchêne<sup>16</sup>, O. Drapier<sup>16</sup>, A. Giampaolo<sup>16</sup>, Th. A. Mueller<sup>16</sup>, A. D. Santos<sup>16</sup>, P. Paganini<sup>16</sup>, B. Quilain<sup>16</sup>, T. Ishizuka<sup>17</sup> T. Nakamura<sup>18</sup>, J. S. Jang<sup>19</sup>, J. G. Learned<sup>20</sup>, K. Choi<sup>21</sup>, N. Iovine<sup>21</sup>, S. Cao<sup>22</sup>, L. H. V. Anthony<sup>23</sup>, D. Martin<sup>23</sup>, M. Scott<sup>23</sup>, A. A. Sztuc<sup>23</sup>, Y. Uchida<sup>23</sup>, V. Berardi<sup>24</sup>, M. G. Catanesi<sup>24</sup>, E. Radicioni<sup>24</sup>, N. F. Calabria<sup>25</sup>, A. Langella<sup>25</sup>, L. N. Machado<sup>25</sup>, G. De Rosa<sup>25</sup>, G. Collazuol<sup>26</sup>, F. Iacob<sup>26</sup>, M. Lamoureux<sup>26</sup>, M. Mattiazzi<sup>26</sup>, L. Ludovici<sup>27</sup>, M. Gonin<sup>6</sup>, G. Pronost<sup>6</sup><sup>(1)</sup>, C. Fujisawa<sup>28</sup>, Y. Maekawa<sup>28</sup>, Y. Nishimura<sup>28</sup><sup>(1)</sup>, R. Okazaki<sup>28</sup>, R. Akutsu<sup>12</sup>, M. Friend<sup>12</sup>, T. Hasegawa<sup>12</sup><sup>(1)</sup>, T. Ishida<sup>12</sup>, T. Kobayashi<sup>12</sup>, M. Jakkapu<sup>12</sup>, T. Matsubara<sup>12</sup>, T. Nakadaira<sup>12</sup>, K. Nakamura<sup>3,12</sup>, Y. Oyama<sup>12</sup>, K. Sakashita<sup>12</sup>, T. Sekiguchi<sup>12</sup>, T. Tsukamoto<sup>12</sup>, N. Bhuiyan<sup>29</sup>, G. T. Burton<sup>29</sup>, F. Di Lodovico<sup>29</sup>, J. Gao<sup>29</sup>, A. Goldsack<sup>29</sup>, T. Katori<sup>29</sup>, J. Migenda<sup>29</sup>, Z. Xie<sup>29</sup>, S. Zsoldos<sup>3,29</sup>, Y. Kotsar<sup>30</sup>, H. Ozaki<sup>30</sup>, A. T. Suzuki<sup>30</sup>, Y. Takagi<sup>30</sup>, Y. Takeuchi<sup>3,30</sup>, J. Feng<sup>31</sup> L. Feng<sup>31</sup>, J. R. Hu<sup>31</sup><sup>(i)</sup>, Z. Hu<sup>31</sup><sup>(i)</sup>, T. Kikawa<sup>31</sup>, M. Mori<sup>31</sup>, T. Nakaya<sup>3,31</sup><sup>(i)</sup>, R. A. Wendell<sup>3,31</sup><sup>(i)</sup>, K. Yasutome<sup>31</sup>, S. J. Jenkins<sup>32</sup><sup>(1)</sup>, N. McCauley<sup>32</sup><sup>(1)</sup>, P. Mehta<sup>32</sup>, A. Tarrant<sup>32</sup><sup>(1)</sup>, Y. Fukuda<sup>33</sup><sup>(1)</sup>, Y. Itow<sup>34,35</sup><sup>(1)</sup>, H. Menjo<sup>34</sup><sup>(1)</sup>, K. Ninomiya<sup>34</sup> J. Lagoda<sup>36</sup>, S. M. Lakshmi<sup>36</sup>, M. Mandal<sup>36</sup>, P. Mijakowski<sup>36</sup>, Y. S. Prabhu<sup>36</sup>, J. Zalipska<sup>36</sup>, M. Jia<sup>37</sup>, J. Jiang<sup>37</sup>, C. K. Jung<sup>37</sup>, M. J. Wilking<sup>37</sup>, C. Yanagisawa<sup>37,56</sup>, Y. Hino<sup>1</sup>, H. Ishino<sup>1</sup>, H. Kitagawa<sup>1</sup>, Y. Koshio<sup>1,3</sup>, F. Nakanishi<sup>1</sup>, S. Sakai<sup>1</sup>, T. Tada<sup>1</sup>, T. Tano<sup>1</sup>, G. Barr<sup>38</sup>, D. Barrow<sup>38</sup>, L. Cook<sup>3,38</sup>, S. Samani<sup>38</sup>, D. Wark<sup>38,39</sup>, A. Holin<sup>40</sup>, F. Nova<sup>41</sup>, B. S. Yang<sup>40</sup> J. Y. Yang<sup>40</sup>, J. Yoo<sup>40</sup>, J. E. P. Fannon<sup>42</sup>, L. Kneale<sup>42</sup>, M. Malek<sup>42</sup>, J. M. McElwee<sup>42</sup>, M. D. Thiesse<sup>42</sup>, L. F. Thompson<sup>42</sup>, S. T. Wilson<sup>42</sup>, H. Okazawa<sup>43</sup>, S. B. Kim<sup>44</sup>, E. Kwon<sup>44</sup><sup>(10)</sup>, J. W. Seo<sup>44</sup><sup>(10)</sup>, I. Yu<sup>44</sup><sup>(10)</sup>, A. K. Ichikawa<sup>45</sup>, K. D. Nakamura<sup>45</sup><sup>(10)</sup>, S. Tairafune<sup>45</sup>, K. Nishijima<sup>46</sup>, K. Nakagiri<sup>47</sup>, Y. Nakajima<sup>3,47</sup>, S. Shima<sup>47</sup>, N. Taniuchi<sup>47</sup>, E. Watanabe<sup>47</sup>, M. Yokoyama<sup>3,47</sup>, P. de Perio<sup>3</sup>, K. Martens<sup>3</sup>, K. M. Tsui<sup>3</sup>, M. R. Vagins<sup>3,4</sup>, J. Xia<sup>3</sup>, M. Kuze<sup>48</sup>, S. Izumiyama<sup>48</sup>, R. Matsumoto<sup>48</sup>, M. Ishitsuka<sup>49</sup>, H. Ito<sup>49</sup>, T. Kinoshita<sup>49</sup>, R. Matsumoto<sup>49</sup>, Y. Ommura<sup>49</sup>, N. Shigeta<sup>49</sup>, M. Shinoki<sup>49</sup>, T. Suganuma<sup>49</sup>, K. Yamauchi<sup>49</sup>, J. F. Martin<sup>50</sup>, H. A. Tanaka<sup>50</sup>, T. Towstego<sup>50</sup>, R. Gaur<sup>10</sup>, V. Gousy-Leblanc<sup>10,57</sup>, M. Hartz<sup>10</sup>, A. Konaka<sup>10</sup>, X. Li<sup>10</sup>, N. W. Prouse<sup>10,51</sup>, S. Chen<sup>51</sup>, B. D. Xu<sup>51</sup>, B. Zhang<sup>51</sup>, M. Posiadala-Zezula<sup>52</sup>, S. B. Boyd<sup>53</sup>, R. Edwards<sup>53</sup>, D. Hadley<sup>53</sup>, M. Nicholson<sup>53</sup>, M. O'Flaherty<sup>53</sup>, B. Richards<sup>53</sup>, A. Ali<sup>10,54</sup>, B. Jamieson<sup>54</sup>, Ll. Marti<sup>55</sup>, A. Minamino<sup>55</sup><sup>(0)</sup>, G. Pintaudi<sup>55</sup>, S. Sano<sup>55</sup>, S. Suzuki<sup>55</sup>, K. Wada<sup>55</sup>, and The Super-Kamiokande Collaboration



#### 1. イントロダクション

2. これまでの研究

#### 3. SK-Gd実験での中性子同定手法構築と評価

#### 4. 超新星背景ニュートリノ探索

#### 5. まとめ

### 超新星爆発

- 超新星爆発(SN):~8M<sub>☉</sub>以上の星が一生の最後に起こす爆発現象
  - ► 発生レート: 1-3 /century/galaxy
  - ▶ 総放出エネルギー:~10<sup>53</sup> erg
- 親星質量によって爆発過程が異なる
  - 核燃焼型
  - 重力崩壊型(Core-Collapse SN: CCSN)
     →ニュートリノを生成



エネルギーの99%がニュートリノによって放出される →超新星爆発の理解にはニ<mark>ュートリノの観測が重要</mark>

# 超新星爆発からのニュートリノ

### 数多くの数値シミュレーションによる理論予測 「「「「」」 実際にニュートリノが観測されたのは1987年の一回のみ →**超新星起源のニュートリノ観測**が期待されている





# 超新星背景ニュートリノ(SRN)

- SRN(Supernova Relic Neutrino):
   過去のCCSNeで生成されたニュートリノの重ね合わせ
- SRNフラックス計算
  - ▶ 超新星ニュートリノスペクトル
  - ▶ 超新星爆発レート
  - ▶ 星の初期質量、星形成率等の銀河の進化



$$\frac{d\Phi(E_{\nu})}{dE_{\nu}} = c \int_{0}^{\infty} \frac{dz}{H_{0}(1+z)\sqrt{\Omega_{m}(1+z)^{3} + \Omega_{\Lambda}}} = z - \mathbb{E} \nabla \mathcal{F} \nabla \mathcal{F}$$

SRNフラックス

様々な予想からSRNフラックスの理論予測は1桁の幅をもつ →SRN観測により<mark>爆発機構や宇宙の星形成</mark>に新たな知見が得られる



スーパーカミオカンデ(SK)



#### SK 実験での SRN 探索

- ► 反電子ニュートリノの逆ベータ崩壊(IBD)の探索
  - ▶ 30 MeVまでで他の反応より1-2桁大きい断面積
- ▶ 探索信号:  $\bar{\nu}_e + p \longrightarrow e^+ + n$ 
  - ▶ 先発信号(e<sup>+</sup>)に付随する中性子の遅延信号とのペアを探索
    - 中性子の伴わない背景事象の削減



### これまでのSRN探索

#### SK-IVの2970日のデータを使った探索が行われた →世界で最も厳しい上限値を設定



# SK-Gd実験

#### SK-Gd実験:Super-Kamiokande検出器に ガドリニウムを導入して中性子同定効率の向上

- ▶ ガドリニウム (Gd)
  - ▶ 天然元素中で最大の熱中性子捕獲断面積

#### →<u>低濃度で十分な捕獲割合</u>

▶ 捕獲時にSKで十分検出可能な合計8 MeVの γ 線 →中性子同定効率の向上



# SK-Gd実験

#### SK-Gd実験:Super-Kamiokande検出器に ガドリニウムを導入して中性子同定効率の向上

- ▶ ガドリニウム (Gd)
  - ▶ 天然元素中で最大の熱中性子捕獲断面積
    - → <u>低濃度で十分な捕獲割合+中性子捕獲時定数の短縮</u>
  - ▶ 捕獲時にSKで十分検出可能な合計8 MeVのγ線

→中性子同定効率の向上

#### <u>SK-VI: Gd 濃度0.01%</u>

- ► 時定数115µs
- ▶ Gd捕獲割合47.8%





# これまで。の研究



# これまでの研究



# これまでの研究



# これまでの研究



# SK-Gdでの中性子同定と Am/Be線源測定

# 中性子同定手法

#### <u>SKのトリガーシステム</u>

60 PMT hits/200 nsでイベントトリガー(先発事象)のあと、
 [-5, 535] µsのヒットを保存する

→中性子のヒットクラスタを探索可能



#### <u>中性子候補事象選択</u>

• [4, 535] μsの範囲で25 PMT hits/200 nsのクラスタ探索



# 中性子同定手法

### 全ての中性子候補を事象再構成をして Gd中性子捕獲由来の遅延信号を選択





### MCを使った中性子同定効率見積り

中性子シミュレーションを用いて 時定数と同定効率を見積もる

| 22000<br>20000<br>18000<br>16000 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | εtrue <sub>=</sub> | 選別後に残った中性子数<br>生成中性子数 |           |                   |
|----------------------------------|-------------------------------------------------------|--------------------|-----------------------|-----------|-------------------|
| 14000                            | Constant 33.51 ± 12.47                                |                    | Noise                 | p-capture | <b>Gd-capture</b> |
| 10000<br>8000                    | BG H-capture                                          | <br>真の中性子<br>捕獲数   |                       | 1.0       | 1.0               |
| 6000<br>4000<br>2000             | Gd-capture                                            | 25ヒット<br>トリガー      | 1                     | 0.412     | 0.950             |
| 00                               | 100 200 300 400 500<br>Capture Time [μs]              | 残存事象               | 0.00002               | 0.024     | 0.786             |

#### 79%のGd-captureを同定可能

Gd捕獲47.8%

中性子全体の39.5±0.1%を同定可能になった

## Am/Be線源を用いた中性子測定

### SK-Gd実験が開始され、 中性子同定効率が格段に向上

→MCでは39.5%



- 実際の測定でどれくらいになるのか?
- 同定効率における系統誤差は?



中性子線源を用いた測定が必要 →Am/Be線源測定

# Am/Be線源





# BGOのシンチレーションの先発事象と、



Am/Be中性子線源測定



### 検出器性能理解のために 複数のセットアップでのデータを取得

BGOの影響の調査:
 BGO被覆率の違う(立体角1/4)
 線源系で測定



 ・同定効率の位置依存性:
 タンク内の異なる9点で測定
 →系統誤差に含める



# 中性子同定効率測定結果

### データとMCの中性子同定効率をBGOの数ごとに比較



- ▶ DATAとMCが10%以内で一致することを確認
- ▶ 同定効率・DATA/MCともにBGOの数に依存

# 中性子同定効率測定結果

#### データとMCの中性子同定効率をBGOの数ごとに比較



▶ OBGOで同定効率40.2±0.1%と見積もった →BGOにより同定効率が低下していたことがわかった

# 中性子同定効率測定結果

### データとMCの中性子同定効率をBGOの数ごとに比較



SK-Gdでの中性子同定効率: 40.2±0.1(stat.)<sup>+0.9</sup>(syst.)%

(相対誤差8.8%)

# 中性子測定まとめ

- SK-Gd実験での中性子同定手法を確立した
  - →自身で構築した検出器MCを使ってGdによる中性子捕獲効率を 見積もった
- SKにGdを導入後初の中性子線源測定を実施
  - →中性子の捕獲時定数や同定効率について実データを用いて 評価した
- データとMCを比較することで、解析における系統誤差を
   8.8%と見積もった

→データ解析に用いることができる

# SK-Gd実験での 超新星背景ニュートリノ探索

## SK-Gd実験で最初のSRN探索

#### SK-Gd実験の初期観測データを使って SRN探索を行なった

- ► データセット: SK-VI (Live time: 552.2 days)
  - ► Gd濃度: 0.01%
  - ▶ 探索ニュートリノエネルギー:
     9.3 ~ 31.3 MeV
     (陽電子エネルギー: 8~30 MeV)



バックグラウンド事象

- 中性子を伴う可能性があるバックグラウンド
  - ▶ 大気ニュートリノ起源事象



▶ ミューオンの原子核破砕で生成される放射性同位体の崩壊



バックグラウンド事象

- 中性子を伴う可能性があるバックグラウンド
  - アクシデンタル事象
    - ▶ 電子事象+中性子信号のペアが偶然できる
    - ▶ 多くは中性子のない核破砕事象(SRNのO(10<sup>6</sup>)倍)+中性子誤識別事象

- ▶ 原子炉ニュートリノ
  - ► 信号はSRNと同じIBD
     →エネルギーが低くほとんど影響しない

#### それぞれのバックグラウンドについて 除去手法の確立が必要



#### 宇宙線が地球の大気で反応 →E >100 MeV ニュートリノ生成

- SKは高エネルギー $\mu$ 、 $\pi$ をe信号と区別可能
  - 低エネルギーμ、π
  - ▶ 原子核反応からのγ線を区別し、除去する必要がある







# 大気ニュートリノ事象除去

- $\mu$ 、  $\pi$  と e の 性質の 違いを 使った カット
  - 崩壊事象の有無、PMT電荷量、ヒットパターンetc..
- NCQE事象
  - 2次原子核反応との区別ができない→同一のイベントとして観測
  - イベントは原子核の脱励起→SRNのエネルギー領域に被る


# チェレンコフ角度を用いた除去

粒子の違いがチェレンコフ角度に反映される →チェレンコフ角度を用いた除去





 µ、π: 質量が大きい→θ<sub>c</sub> が小さくなる
 NCQE: 複数のガンマ線が一つのイベント → θ<sub>c</sub> ~ 90°で再構成



# ミューオンの原子核破砕

- SKには2 Hzで宇宙線ミューオンが飛来
  - ミューオンが原子核を破砕→同位体の崩壊 (msecスケール)



# ミューオンの原子核破砕

- SKには2 Hzで宇宙線ミューオンが飛来
  - ミューオンが原子核を破砕→同位体の崩壊 (msecスケール)



# 核破砕事象除去

#### • 核破砕によってハドロンシャワーが発生

- ▶ µ事象後に中性子クラスター(100µs)
- ▶ 時間(sec)・空間(m)相関を持った 低エネルギー事象クラスター

- 同位体崩壊はミューオン事象の近くで起こる
  - ▶ ミューオンとの時間差
  - ▶ ミューオントラックとの距離
  - ▶ ミューオンがどこでエネルギーを落としたか

#### →尤度計算

原子核破砕の精度良いモデルがない

→データを使って除去性能を見積もる





ミューオンサンプリング

データから核破砕ミューオンとそうでないミューオンを比較するために、 SRN候補事象の時間前後のミューオンをサンプル 核破砕サンプル ランダムサンプル -60 sec $\pm 0 \text{ sec}$ +60 sec $(\sim msec)$  $\Delta T$ muons **SRN候補事象** 

(核破砕サンプル – ランダムサンプル)から、核破砕の特徴量を抽出

# 尤度関数を使った核破砕除去



SK-GdでのSRN探索





\*尤度関数の閾値はイベント種類ごとに変化させる



SK-GdでのSRN探索

 $10^{3}$ 

# 中性子数を使った事象選択

#### 遅延中性子数=1を要求

核破砕除去カットで核破砕をO(1)%に削減

→アクシデンタル事象を低減するために

中性子誤認識率をO(10-4)[/event]に削減する必要

中性子選択のエネルギーカットを<u>3→3.5 MeVまで引き上げた</u>



# 中性子数を使った事象選択

#### 遅延中性子数=1を要求

- ▶ 中性子が付随しない事象(大半の核破砕事象、太陽 ν)
- ▶ 中性子が複数随伴する事象(大気ニュートリノ) →を除去してIBDを選択









#### バックグラウンドMCのイベント選別結果 →バックグラウンドの種類からbin幅を決定

|                                   | Energy range [MeV]                                                                                                                              | Contained Background                                                                                                                                       |  |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                   | 7.5 - 9.5                                                                                                                                       | non-NCQE, NCQE, Li9, Reactor, Accidental                                                                                                                   |  |
|                                   | 9.5 - 11.5                                                                                                                                      | non-NCQE, NCQE, Li9, Accidental                                                                                                                            |  |
|                                   | 11.5 - 15.5                                                                                                                                     | non-NCQE, NCQE, Li9, Accidental                                                                                                                            |  |
|                                   | 15.5 - 23.5                                                                                                                                     | non-NCQE, NCQE                                                                                                                                             |  |
|                                   | 23.5 - 29.5                                                                                                                                     | non-NCQE, (NCQE)                                                                                                                                           |  |
| 10 <sup>2</sup>                   | Atmospheric-v (non-NCQE<br>Atmospheric-v (NCQE)<br>Spallation <sup>9</sup> Li<br>Reactor-v<br>Accidental coincidence<br>DSNB (Horiuchi+09 6-MeV | Atmospheric-v (non-NCQE)<br>Atmospheric-v (NCQE)<br>Spallation <sup>9</sup> Li<br>Reactor-v<br>Accidental coincidence<br>DSNB (Horiuchi+09 6-MeV, Maximum) |  |
| 10 <sup>-1</sup> <mark>≕</mark> { |                                                                                                                                                 | 10 <sup>-1</sup><br>26 28 8 10 12 14 16 18 20 22 24 26 28<br>ルギー [MeV] 再構成運動エネルギー[MeV]                                                                     |  |





イベント選別結果



| Energy range | Observed event | Expected background |
|--------------|----------------|---------------------|
| 7.5 - 9.5    | 5              | 7.73±2.35           |
| 9.5 - 11.5   | 5              | 4.14±1.15           |
| 11.5 - 15.5  | 3              | 2.13±0.57           |
| 15.5 - 23.5  | 2              | 0.98±0.29           |
| 23.5 - 29.5  | ]              | 0.98±0.34           |

### P-value test

### バックグラウンド期待値からPoisson分布に従って 各エネルギービンで擬似観測事象を作成

→観測事象がバックグラウンドで説明できる確率(p-value)を求めた



# 上限值計算

「本研究でSRNを観測できなかった」ことから Toy MCを用いてSRNに対する90%信頼度上限(N<sup>limit</sup>)を設定

1. 各エネルギービンの観測数 (N<sup>toy</sup>) とバックグラウンド数 (N<sup>toy</sup>)

をそれぞれの誤差に従って生成(Gauss分布)



# フラックス上限値

### 552.2日の観測からSKに飛来するSRNフラックスについて 上限値を決定した



- ▶ T :観測ライブタイム
- ▶  $\bar{\sigma}_{IBD}$  : IBD反応断面積
- ▶ ε<sub>sig</sub> : シグナル効率
- ▶ dE :エネルギービン幅

# フラックス上限値

### 552.2日の観測からSKに飛来するSRNフラックスについて 上限値を決定した



<u>約20%の測定期間</u>で 純水期の2970日の上限値 と同レベルの結果 →SK-Gd実験はSRNに 対して世界一の感度



## 将来への展望

### SK-Gd実験での今後の解析 ✓<u>Gd濃度0.03%</u>の観測(SK-VII) ✓各バックグラウンドの削減







# フラックス感度の将来予測

#### 今回の結果からSK-VIIでの感度を予測



### ブラックホールと重い中性子星形成への制限

Ashida, Nakazato (2022)では超新星爆発後に残る天体による ニュートリノスペクトルへの影響がSRNフラックスに考慮された

3つの状態方程式(EOS)\*について <u>軽い中性子星</u>(CNS, < 1.6M<sub>☉</sub>)、<u>重い中性子星</u>(HNS, > 1.6M<sub>☉</sub>)、

将来への展望

<u>ブラックホール</u>(BH)を作るような超新星でのニュートリノフラックス計算



\*EOS:高密度天体の圧力と密度の関係式

### ブラックホールと重い中性子星形成への制限

Ashida, Nakazato (2022)では超新星爆発後に残る天体による ニュートリノスペクトルへの影響がSRNフラックスに考慮された

Ashida, Nakazato (2022)



3種類のフラックスを混合するパラメータ $f_{BH}, f_{HNS}$ の パラメータ空間をSK-Gdの感度予想から制限できる





BHを作る超新星は平均エネルギーが大きくなる →エネルギー積分範囲を13.3, 17.3 MeVで変えて比較



SK-Gd10年の観測から、ブラックホールや重い中性子星を 作る超新星の割合に言及できる









まとめ

- ・SK-Gd実験の552日の初期データを用いた初のSRN探索を 行った。
- ・自身で構築したMCと中性子同定手法を用いて バックグラウンドやシグナル効率の見積もりを行った。
- SRN初観測には至らなかったが、SK-Gd実験がSRNに対して世界で最も高い感度を有することを示した。
- 将来感度を見積もり、フラックスの大きいモデルについて 検証可能であることを示した。
- ・SK-Gd10年のSRN探索から爆発後に残る天体についての 知見が得られることを示した。





- 代表的な超新星爆発残骸
  - 中心には中性子星
- ・地球から2kpc
- •1054年
  - 中国「宋史」
  - 「明月記」
    で言及されている



# 超新星爆発からのニュートリノ



# 超新星爆発



## SRN理論モデル

- Kaplinghat+20: 超新星レートとその進化を metallicity enrichment rate (MER)で見積もった
   →それ以外のパラメータはconservative
- ・Horiuchi+09: CCSNレートの進化を宇宙の星形成史の 観測データから見積もった
- Nakazato+15:銀河の金属量分布の進化を導入し、
  ブラックホールからの寄与をより現実的にした
  (古い星ほど金属量が低く、質量放出が少ない=BHになりやすい)

# ニュートリノ振動

$$\mathbf{NH:} \frac{dN_{\bar{\nu}_e}}{dE_{\nu}} \sim 0.68 \frac{dN_{\bar{\nu}_e}^0}{dE_{\nu}} + 0.32 \frac{dN_{\bar{\nu}_x}^0}{dE_{\nu}}$$
$$\mathbf{IH:} \frac{dN_{\bar{\nu}_e}}{dE_{\nu}} \sim \frac{dN_{\bar{\nu}_x}^0}{dE_{\nu}}$$





# Hyper-Kamiokande

- ▶ 直径68 m x 高さ71 m
  →SKの8倍の有効質量
- ▶ 神岡地下600 mに建設中
- ► SKと同等の光子検出効率
- ▶ 2027年内にデータ取得開始予定



# SKの検出器シミュレーション

| Phase          | SKDETSIM                            | SKG4   |
|----------------|-------------------------------------|--------|
| Language       | FORTRAN                             | C++    |
| Toolkit        | GEANT3                              | GEANT4 |
| Physics models | Old<br>(update was stopped in 1994) | Latest |

- GEANT (GEometry ANd Tracking)
  - 粒子生成、設定した物理モデル相互作用、トラッキング
    を構築したジオメトリ内でモンテカルロ計算するツール
- ▶ SK-Gd実験で重要なGd中性子捕獲からのガンマ線生成モデル等、 外部モデルの導入・管理の観点からGEANT4の導入

# 河川水測定

▶ SK-Gd検出器でGd水が河川に漏出した場合Gd濃度が大きくなる
 →実験が始まる前にSK上流~下流の河川水を採取&Gd濃度測定



- 化学分離&濃縮をした河川水をICP-MSで測定
  →Gd濃度を0.1pg/mLで測定可能であることを示した
- ► 1 g/dayのGd漏出を測定可能

# 再構成クオリティ

$$g_{\rm vtx} = \frac{1}{\sum^{N_{\rm hits}} 1/w^2(t_{\rm res,i})} \times \sum_{i}^{N_{\rm hits}} \frac{1}{w^2(t_{\rm res,i})} \exp\left[-\frac{t_{\rm res,i}^2}{2\sigma^2(t_{\rm res,i})}\right]$$

$$g_{\rm dir} = \frac{\max\left[\angle_{\rm uniform}^{i} - \angle_{\rm data}^{i}\right] - \min\left[\angle_{\rm uniform}^{i} - \angle_{\rm data}^{i}\right]}{2\pi}$$



# 中性子同定効率






# 中性子同定効率の系統誤差

| Content                                                             | Systematic uncertainty |  |  |
|---------------------------------------------------------------------|------------------------|--|--|
| Prompt event selection                                              | $0.47\% \qquad 0.47\%$ |  |  |
| Timing goodness $g_{vtx}$                                           | 0.94%                  |  |  |
| Direction goodness $g_{\rm dir}$                                    | 0.03%                  |  |  |
| Reconstructed energy                                                | 0.23%                  |  |  |
| Vertex resolution                                                   | 0.44%                  |  |  |
| Gd concentration                                                    | 0.17%                  |  |  |
| $\operatorname{Gd}(\operatorname{n},\gamma)\operatorname{Gd}$ model | 1.70% 1.99%            |  |  |
| Neutron excitation state                                            | 0.39% 1.8370           |  |  |
| Neutron energy spectrum                                             | 0.53%                  |  |  |
| Position dependence                                                 | $0.47\% \qquad 0.47\%$ |  |  |
| Total                                                               | 2.22%                  |  |  |

#### Dummy prompt

#### (Dummy prompt event) = 測定時間 [s])

× (ランダム中性子 [Hz]) × (中性子捕獲ガンマ線が先発事象になる確率) × (SHEトリガー効率\*) × (AFTトリガー効率\*\*)



\*SHEトリガー:60 hits/200 ns \*\*AFTトリガー:SHEイベントの後500 μs。21 msに一回。

## DATA/MCの理解に対する試み

- Wada et al. (arXiv:2304.12153)
   →神岡で使われているAm/Be線源の詳細理解
  - ・ 産総研(AIST)で全中性子数測定(236.8±5.0 Hz)
  - ・HPGeで4.4 MeVガンマ線レート測定(110.1±15.5 Hz)
  - NalとLqSを使ったn/γ測定 (n0/n1~0.68±0.06)
- SKのデータを使ったレート見積もり

### DATA/MCの理解に対する試み

- SK純水期のデータを使った4.4 MeVガンマレート解析
  - ・ガンマ線レート:132.8±7.8 Hz  $\rightarrow$ Wada et al.  $\succeq$  consistent
- SK-Gdで中性子レート解析





## **Pre-Activity cut**

- IBD事象は陽電子信号より前にPMTヒットクラスタを作らない
   ↔大気ν事象は複数粒子の信号が前後にクラスタを作る可能性
- Pre-activity cut: [-5e3, -12 ns]の間にあるヒットクラスタを T-TOF分布から15 ns で探索



### **Post-Activity cut**

- IBD事象は陽電子信号より前にPMTヒットクラスタを作らない
   ↔大気ν事象は複数粒子の信号が前後にクラスタを作る可能性
- Post-activity cut: [1, 35 μs]でミューオン崩壊電子探索



#### Pion likeness

- ・電子:電磁シャワーでチェレンコフ光がまばらになる
- パイオン:クリアな綺麗なリングをつくる



### **Pion likeness**

- 3hitでOpening angleを計算
- ・ピークをCherenkov angleとする →電子に比べて、ミューオン、パイオンは 鋭いピークになる





### Pion likeness



## Q50/N50 cut

- 1つのPMTは400 ns間の積分電荷を持つ
- ・ミューオンは電子より複数ヒットが多い
   →積分電荷が1光電子より大きい



残存大気ニュートリノイベント

- CCイベント: µ崩壊からの電子
- NCイベント:脱励起からのガンマ線



## **NCQE** systematics

| T2K cross-section          | 44% |
|----------------------------|-----|
| Atmospheric neutrino flux  | 15% |
| Flux difference            | 7%  |
| Reductions                 | 2%  |
| Neutron tagging efficiency | 9%  |
| Neutron multiplicity       | 30% |
| Spectral shape             | 37% |
| Total                      | 68% |

### 放射性同位体崩壊の種類





## 放射性同位体崩壊の種類

|   | Isotope           | Half-life | Decay mode                              | Yield                                       | Primary process                          |  |
|---|-------------------|-----------|-----------------------------------------|---------------------------------------------|------------------------------------------|--|
|   |                   | - [s]     |                                         | $[	imes 10^{-7} \mu^{-1} g^{-1} { m cm}^2]$ |                                          |  |
|   | n                 |           |                                         | 2030                                        |                                          |  |
|   | $^{18}N$          | 0.624     | $\beta^{-}$                             | 0.02                                        | $^{18}\mathrm{O}(n,p)$                   |  |
|   | $^{17}$ N         | 4.173     | $eta^- + n$                             | 0.59                                        | $^{18}\mathrm{O}(n,n+p)$                 |  |
|   | $^{16}N$          | 7.13      | $eta^- + \gamma(66\%), eta^-(28\%)$     | 18                                          | (n,p)                                    |  |
|   | $^{16}\mathrm{C}$ | 0.747     | $eta^- + n$                             | 0.02                                        | $(\pi^-, n+p)$                           |  |
|   | $^{15}\mathrm{C}$ | 2.449     | $eta^- + \gamma(63\%), eta^-(37\%)$     | 0.82                                        | (n,2p)                                   |  |
|   | $^{14}\mathrm{B}$ | 0.0138    | $eta^-+\gamma$                          | 0.02                                        | (n,3p)                                   |  |
|   | $^{13}O$          | 0.0086    | $eta^+$                                 | 0.26                                        | $(\mu^-,p+2n+\mu^-+\pi^-)$               |  |
|   | $^{13}\mathrm{B}$ | 0.0174    | $\beta^{-}$                             | 1.9                                         | $(\pi^-,2p+n)$                           |  |
|   | $^{12}$ N         | 0.0110    | $eta^-$                                 | 1.3                                         | $(\pi^+, 2p+2n)$                         |  |
|   | $^{12}\mathrm{B}$ | 0.0202    | $eta^+$                                 | 0.02                                        | (n, lpha + p)                            |  |
|   | $^{12}\text{Be}$  | 0.0236    | $\beta^-$                               | 12                                          | (n, lpha + p + n)                        |  |
|   | $^{11}$ Be        | 13.8      | $eta^-(55\%),eta^-(31\%)$               | 0.10                                        | (n, lpha+2p)                             |  |
|   | $^{11}Li$         | 0.0085    | $eta^-+n$                               | 0.01                                        | $(\pi^+, 5p + \pi^+ + \pi^0)$            |  |
| ١ | ${}^{9}C$         | 0.127     | $eta^+$                                 | 0.89                                        | (n, lpha + 4n)                           |  |
| ) | <sup>9</sup> Li   | 0.178     | $eta^- + n(51\%), eta^-(49\%)$          | 1.9                                         | $(\pi^-, lpha+2p+n)$                     |  |
|   | $^{8}\mathrm{B}$  | 0.77      | $eta^+$                                 | 5.8                                         | $(\pi^-, lpha+2p+2n)$                    |  |
|   | <sup>8</sup> Li   | 0.838     | $eta^-$                                 | 13                                          | $(\pi^-, lpha + {}^2\mathrm{H} + p + n)$ |  |
|   | <sup>8</sup> He   | 0.119     | $eta^- + \gamma(84\%), eta^- + n(16\%)$ | 0.23                                        | $(\pi^-, {}^3\mathrm{H}+4p+n)$           |  |
|   | $^{15}O$          |           |                                         | 351                                         | $(\gamma + n)$                           |  |
|   | $^{15}N$          |           |                                         | 773                                         | $(\gamma + p)$                           |  |
|   | $^{14}O$          |           |                                         | 13                                          | (n,3n)                                   |  |
|   | $^{14}N$          |           |                                         | <b>295</b>                                  | $(\gamma, n+p)$                          |  |
|   | $^{14}\mathrm{C}$ |           |                                         | 64                                          | (n,n+2p)                                 |  |
|   | $^{13}N$          |           |                                         | 19                                          | $(\gamma, {}^{3}\mathrm{H})$             |  |
|   | $^{13}\mathrm{C}$ |           |                                         | 225                                         | $(n, {}^{2}\mathrm{H} + p + n)$          |  |
|   | $^{12}\mathrm{C}$ |           |                                         | 792                                         | $(\gamma, lpha)$                         |  |
|   | $^{11}\mathrm{C}$ |           |                                         | 105                                         | (n, lpha+2n)                             |  |
|   | $^{11}\mathrm{B}$ |           |                                         | 174                                         | (n, lpha + p + n)                        |  |
|   | $^{10}\mathrm{C}$ |           |                                         | 7.6                                         | (n, lpha + 3n)                           |  |
|   | $^{10}B$          |           |                                         | 77                                          | (n, lpha + p + 2n)                       |  |
|   | <sup>9</sup> Be   |           |                                         | 24                                          | (n, lpha+2p+n)                           |  |
|   | <sup>9</sup> Be   |           |                                         | 38                                          | (n,2lpha)                                |  |
|   | sum               |           |                                         | 3015                                        |                                          |  |

ミューオン:11%
(7%:16N,4% others)

• 二次粒子:89%

## Neutron cloud cut

- 25 hits/200 ns
- [35,535] us from the muon
- $g_{vtx} > 0.4$  and  $g_{dir} > 0.4$
- Distance from muon track < 5 m</li>



#### Neutron cloud cut

・時間・空間的な依存は中性子数に依存

→ Cutも中性子数で変える

















#### Neutron cloud cut



## 尤度関数を使った核破砕除去



## **Spallation PDF**

 PDFを作るときの統計を kernel-density-estimation(KDE)で補償

$$\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} k\left(\frac{x - X_i}{h}\right)$$



# **Spallation PDF**



## Likelihood distribution



### **ROC curve**



### **ROC curve**



## Signal Efficiency



## Side-band bin

- side-band region
  - ► 大気 ν 由来のinvisible muonの崩壊
  - ▶ 大気 ν e 反応
- 崩壊電子のMichel-SpectrumでMCをscaling



### フラックス上限値

| Neutrino energy [MeV]                                                        | 9.29 - 11.29                 | 11.29 - 13.29 | 13.29 - 17.29          | 17.29 - 25.29 | 25.29 - 31.29 |
|------------------------------------------------------------------------------|------------------------------|---------------|------------------------|---------------|---------------|
| Live time $T$                                                                |                              |               | $552.2 \mathrm{~days}$ |               |               |
| Number of Target $N_p$                                                       | $1.5 \times 10^{33}$ protons |               |                        |               |               |
| $N_{90}^{ m limit}$                                                          | 3.94                         | 4.70          | 3.59                   | 3.09          | 1.75          |
| $N_{90}^{\mathrm{exp}}$                                                      | 5.99                         | 3.85          | 2.58                   | 1.69          | 1.72          |
| $\phi_{90}^{\text{limit}}$ [/cm <sup>2</sup> /sec/MeV]                       | 32.32                        | 18.21         | 3.75                   | 0.89          | 0.32          |
| $\phi_{90}^{\mathrm{exp}} \; [/\mathrm{cm}^2  /\mathrm{sec}  /\mathrm{MeV}]$ | 49.16                        | 14.89         | 2.70                   | 0.49          | 0.32          |



#### 今回の結果からSK-VIIでの感度を予測



バックグラウンドに埋もれて現状の想定では観測できない

## フラックス感度の将来予測

#### 今回の結果からSK-VIIでの感度を予測

- ▶ 中性子タグ効率1.5倍→1.8倍(解析改善)
- ▶ →NCQE事象数0.7倍(解析改善)→NCQE不定性0.5倍(外部実験)
- ▶ →Li9不定性0.5倍(MC改善)
- ▶ →CCQE事象数&不定性0.6倍(MC改善+統計向上)



13.3 MeV以上でフラックスが大きいモデルを検証可能

## **SK-VII signal significance**

10年で3σ
 →Li9の削減、NCQE 系統誤差のさらなる削減で3σ



#### 状態方程式

- Cold NSの半径: Togashi < LS < Shen
- BHのとき: LS < Togashi < Shen</li>
   →密度が大きい順にBHになる

