SK-Gd実験における中性子同定と 超新星背景ニュートリノ探索の現状

原田 将之(岡山大学)

他Super-Kamiokande Collaboration

9月7日 @日本物理学会2022年秋季大会

超新星背景ニュートリノ

超新星ニュートリノ(Diffuse Supernova Neutrino Background: DSNB):
 過去に起こってきた超新星爆発で生成されたニュートリノの重ね合わせ

DSNBの観測

超新星爆発機構・星形成の歴史の理解

- スーパーカミオカンデ(SK)実験ではDSNBの観測を目指している
- DSNBの強度が低い(~<10 events/yr)ため、感度が足りておらず、 観測には至っていない→SK-Gd実験

Super-Kamiokande検出器の超純水に硫酸Gdを導入し、 中性子信号を高効率で検出する

- 検出器: Super-Kamiokande(SK)
- Gdの熱中性子捕獲:SKで観測可能な合計~8 MeVのガンマ線信号
- ・ 先発荷電粒子イベント+遅延中性子捕獲イベントの同時遅延計測
 →DSNB観測感度の向上
- 現在Gd濃度0.01%での観測が完了→0.03%での観測を開始
 - 池田さんのシンポジウム講演参照(10pS2-6)

	測定期間	Gd濃度
SK-IV	2008~2018	0%(純水)
SK-VI	2020.07~2022.05	~0.01%
SK-VII	2022.06~	~0.03%

SK-Gd実験での中性子同定

SKにおける現在のDSNB解析

- 2022年6月よりGd濃度0.03%の新フェーズ(SK-VII)が始まった
 →2020年7月~2022年5月のGd濃度0.01%のデータ解析を開始
- 現在のDSNB探索は大きく分けて3つの選別過程
 - ミューオン核破砕イベント除去
 - IBD陽電子信号選別:リングパターン・開き角、電荷量で陽電子選択
 - **中性子信号同定(Neutron tagging)**:先発事象に付随する中性子数で選別

SKにおける現在のDSNB解析

- 2022年6月よりGd濃度0.03%の新フェーズ(SK-VII)が始まった
 →2020年7月~2022年5月のGd濃度0.01%のデータ解析を開始
- 現在のDSNB探索は大きく分けて3つの選別過程
 - ミューオン核破砕イベント除去
 - IBD陽電子信号選別:リングパターン・開き角、電荷量で陽電子選択
 - ・ 中性子信号同定(Neutron tagging):先発事象に付随する中性子数で選別
- MC studyの現状については次の泉山さんの講演を参照

ミューオン核破砕イベント

• 宇宙線ミューオンがタンク内の酸素原子核を破砕

↔破砕同位体の崩壊(~msec)によるイベント

DSNB解析で<20 MeVでのバックグラウンド

→時間・空間を用いた効率的な除去が必要

核破砕同位体イベント除去

- 核破砕イベント除去は3ステップで行われる
 - 多重核破砕イベントカット
 - 中性子クラウドイベントカット
 - ミューオンとの時間・空間相関、電荷を用いたLikelihoodカット
- 本講演では2021年1月の1ヶ月間(Live time 27.3 day)のデータを用いて
 - 多重核破砕イベントカット
 - 中性子クラウドイベントカット

のカット性能について、

- カット後に残る核破砕イベント割合:spallation efficiency ϵ_{spall}
- カット後に残る核破砕イベント以外の割合:random efficiency ϵ_{random} を評価した

①多重核破砕イベントカット

- 高エネルギーミューオンの核破砕で複数の同位体が生成
 ↔~msecの時間スケールで複数の低エネルギー事象として観測される
- DSNB候補事象と低エネルギー事象(>6 MeV)との相関をチェック
 - $|T_{\text{relic}} T_{\text{Low}-E}| < 60 \sec mつ$
 - $|\vec{r}_{relic} \vec{r}_{Low-E}| < 400 \text{ cmのイベントを除去}$

②中性子クラウドカット(1)

- 高エネルギーミューオンの核破砕で複数の中性子
 ↔~100 µsでGd捕獲信号として観測される
- DSNB候補信号から±60 sのミューオン事象の後
 500 µs内のGd捕獲事象を探索
 - PMTヒット数
 - ミューオントラックからの距離
- 検出した中性子事象数 *N_n*[/1µ] ≥ 2:中性子クラウド

②中性子クラウドカット(2)

ΔT: T_{DSNB} – T_µ

 ΔT < 0: (核破砕→DSNB候補)と
 相関があるミューオンあり
 ΔT > 0: (核破砕→DSNB候補)と相関なし
 <u>○2つの領域でカット効率の評価</u>

中性子多重度により時間・空間相関が変化

↔多重度によってカット範囲を調整

カット効率の評価

• ϵ_{spall} と ϵ_{random} をそれぞれのカットについて評価

		核破砕事象除去効率
Preliminary	Erandom	(1 - ε _{spall})
①多重核破砕カット	97.6% (純水期: 98%)	45.9% (純水期: ~45%)
②中性子クラウドカット	98.2% (純水期: >99%)	55.2% (純水期: ~40%)
1&2	95.8% (純水期: ~0.97%)	68.0% (純水期:~55%)

- 中性子同定効率の向上により中性子クラウドカットで除去効率40%→55%に向上
 ↔2つのカットで純水期から13%の向上が見られた
- 今後:Likelihoodを使った選別でさらに核破砕イベントを除去し、
 核破砕バックグラウンドの総量を見積もる

- 2020年にSK-Gd実験が始まり、2022年6月よりGd濃度0.03%での観測が始まった
 →2020年7月~2022年5月(Gd濃度0.01%)のデータを用いたDSNB探索
- 現在、ミューオン核破砕による低エネルギー領域(<20 MeV)における バックグラウンドの除去に取り組んでいる
 →中性子同定が容易になり感度が向上した結果、除去効率が~13%向上
- 今後の予定・展望
 - さらなる事象選別の最適化
 - DSNB探索・理論モデルとの比較
 - イベントトリガーの改善によるエネルギー下限値の拡大→次の泉山さんの講演

Back up

中性子クラウドカット

- Definition for cloud cut:
 - $\Delta(x, y, z) \equiv |(x, y, z)_{\text{cloud}} (x, y, z)_{\text{relic}}|$
 - $\Delta x^2 + \Delta y^2 \equiv l_t^2$
 - $\Delta z \equiv l_l$
 - $\Delta T \equiv |T_{\mu} T_{\text{relic}}|$
- SK-IV criteria for cloud:
 - $\Delta l < 1200$ and $\Delta T < 0.1$
 - $\Delta l < 800$ and $\Delta T < 1$
 - ellipse shape cut _____

Multiplicity	2+	2+	2	3	4–5	6–9	10+
dt (sec)	0.1	1	30	60	60	60	60
$\ell_l (cm)$ $\ell_t (cm)$	1200 1200	800 800	383 219	548 268	603 379	712 490	766 548
μ varyce	enter of c	loud		clou	d-muor	n coordi	inate :

Number	pre-sample	Post-sample
n=2	15158	14062
n=3	6374	5149
n=4-5	5769	4480
n=6-9	3891	2651
n=10+	14605	4666

中性子クラウドカット領域

17

陽電子線別カット

ミューオン核破砕イベント

19

Am/Be線源測定結果

 Additional sys. error of 0BGO is assigned: difference of 1BGO T.E. between DATA/MC.

		DATA	MC	(MC -DATA)/MC
	1BGO	37.5±0.8%	39.5 ± 0.3(stat.) ± 0.9(sys.)%	5.06±0.2%
T.E.	8BGO	34.6±0.5%	37.8 ± 0.2(stat.) ± 0.9(sys.)%	8.47±0.3%
	0BGO	_	40.5 ± 0.1 (stat.) +1.0/–2.1 (sys.)%	

Number of BGOs

中性子クラウドカット(中性子選択)

- In SK-IV, WIT based neutron search is used.
 →From SK-VI, we can use muon+AFT sub-event for Gd-capture.
- By checking data, cut criteria for neutron selection is optimized.
- Blue line shows same condition as Shinoki-san's
 - Number of neutrons are not so much changed by more event quality cut
 →Use same cut as Shinoki-san's

Likelihood変数

- Likelihood計算に使う変数
 - *dt*: DSNB候補とミューオンの時間差
 - *l_t*:横変位
 - l_l : μ trackでdE/dxが大きくなる距離
 - *Q*_µ: ミューオンの電荷
 - $Q_{\text{res}}: Q_{\text{res}} Q_{\text{MIP}}[\text{pC/cm}] \times L_{\text{track}}$

