Search for astronomic neutrinos in Super-Kamiokande

岡山大学自然科学研究科 51428170 徐宸原 博士論文予備審査

これまでの研究

博士論文の目録

- 1. Physics Background
- 2. Super-Kamiokande Detector
- 3. Event Reconstruction
- 4. Simulation
- 5. Calibration
- 6. Data Set
- 7. Neutrino search associated with GW170817
- 8. De-excitation gamma search from CCQE reaction
- 9. Conclusion & Future

今日の流れ

Super-Kamiokandeについて10~15分GW170817に伴うニュートリノ信号について15~20分脱励起ガンマ線探索について5~10分

Super-KamiokaNDE

Key word :

1000m UndergroundWater Cherenkov Detector50kton pure water22.5kton Fiducial Volume11129 PMTs in Inner Detector

SK phase : SK-I : 1996~2001 SK-II : 2002~2005 SK-III : 2006~2008 SK-IV : 2008~2018 SK-Gd : Coming Soon !

光電子增倍管(Photon Multiplier Tube)

SKで見えるニュートリノ(MeV)

4MeV~20MeV : Solar Neutrino v_e (⁸B∠hep) $v_e + e \rightarrow v_e + e$ (Elastic Scattering)

16MeV~30MeV : Supernova Neutrino or Supernova Relic Neutrino v_x $v_x + e \rightarrow v_x + e$ (Elastic Scattering) $\overline{v}_e + p \rightarrow e^+ + n$ (Inverse Beta Decay)

100MeV~: Atmospheric Neutrino $\nu_{\mu}/\overline{\nu}_{\mu}$ Neutral Current Quasi-Elastic $\nu_{\mu} + {}^{16}O \rightarrow \nu_{\mu} + {}^{15}N^* + p(\nu_{\mu} + {}^{15}O^* + n)$ Charged Current Quasi-Elastic $\nu_{\mu} + {}^{16}O \rightarrow \mu^- + {}^{15}N^* + p(\mu^- + {}^{15}F^* + n)$

Event categorized Fully-contained

重力波GW170817に伴うニュートリノ 信号の探索

v(MeV) Emission from NS-NS merger

Thermal v from Binary Neutrino Star merger

- 1. $e^- e^+$ production from thermal photon
- 2. v_e/\overline{v}_e from e capture by nuclei :

$$e^- + p \rightarrow v_e + n$$
 , $e^+ + n \rightarrow \bar{v}_e + p$

- 3. v_x/\overline{v}_x from e^-e^+ annihillation $e^+ + e^- \rightarrow v_x + \overline{v}_x$
- 4. Spectrum can be approximated by Fermi-Dirac Dis.
- 5. Most of energy emitted in 10ms, by v in 10~30MeV

GW170817

GW170817 is the first observation of NS-NS merge GW. Phys. Rev. Lett. **119**, 161101

Source : A merger of two neutron stars with total system mass of 2.74 solar masses, from the Galaxy NGC4993 at a luminosity distance of 40 Mpc.

Optical observation lasted 14days, so here use two kinds of time window for search : $\pm\,500s$ and 14days.

GPS Time : 2017 Aug 17 12:41:04 UT (21:41:04 JST)

SK was in LINAC test run. Beam was not running but beam pipe was inside the tank. (Linear Electron Accelerator to generate electron into SK tank by a pipe)

GW170817 event search in 4~100MeV

Relic reduction Bsenergy [16, 100] MeV no event found in +-500s window

Solar reduction Bsenergy [4, 16] MeV After solar reduction : 7 events in +-500s

After Solar reduction and Calibration source cut : 0 event left in +-500s

Vertex r-z of the 7 events

No event left after pipe 2m cut. (従来の手法ではcalibration sourceから2m以内のeventが除去される)

14days search in 4~100MeV

Relic reduction[16, 100] MeV2 event found in 14days after GW170817

Solar reduction [4, 16] MeV So much low energy BG due to LINAC calibration runs, difficult to get physics meaning

Expected Background Num : 0.00193/1000sec * 9.1527 days(Live Time) = 1.526 (No significant signal observed)

Possibility of Observed Num >= 2:45.08% (最終的にはFluence Limit計算に使う)

2 events left after relic reduction in 14days after GW170817

1: 22.5MeV 2: 40.9MeV

equatorial coordinate system(赤道座標、星の絶対位置を表す、地球自転に依存しない) Points 1&2: Right Ascension and Declination of the 2 events Shadow Area: angle solution Both 2 events are far away from GW170817 source.

GW170817 event search in 100MeV~100PeV

Live time 11.3025 days

No significant signal observed in 14days

∽

data set	Observed Num	SK IV average rate	Expected Num	Away from expected
FC FV cut	76	8.09 \pm 0.05/day	91.44	1.66 sigma lower
PC FV cut	8	0.65 \pm 0.02/day	7.35	0.21 sigma higher
UPMU	13	1.42 ± 0.02	16.05	0.796 sigma lower

Fluence Limit

Fluence Limit

観測された信号数に対して90%C.L.での数

単位面積で1個のvが検出器で観測される予測数 =単位面積でのv数の上限値

	GW170817 $\Phi_{\nu}(\mathrm{cm}^{-2})$	
	from FC+PC only	from UPMU only
$ u_{\mu}$	$5.6 imes10^4$	$16.0\substack{+0.7\\-0.6}$
$ar{ u}_{\mu}$	$1.3 imes10^5$	$21.3^{+1.1}_{-0.8}$
ν_e	$4.8 imes10^4$	-
$\bar{\nu}_e$	$1.2 imes 10^5$	-

from low-energy only

	flat spectrum	Fermi-Dirac with $E_{ave}=20$ MeV
$\bar{\nu}_e$	1.2×10^7	6.6×10^{7}
ν_e	1.0×10^9	3.4×10^{9}
$\bar{ u}_x$	7.5×10^{9}	2.6×10^{10}
ν_x	6.3×10^{9}	2.1×10^{10}

4~100MeV :

$$\Phi_{lowe} = \frac{N_{90}}{N_T \int dE_{\nu} \lambda(E_{\nu}) \sigma(E_{\nu}) R(E_e, E_{vis}) \epsilon(E_{vis})},$$

100MeV~10GeV : $\Phi_{FC,PC} = \frac{N_{90}}{N_T \int dE_\nu \sigma(E_\nu) \epsilon(E_\nu) \lambda(E_\nu^{-2})},$ 10GeV~100PeV : $\Phi_{UPMU} = \frac{N_{90}}{A_{eff}(z) \int dE_{\nu} P(E_{\nu}) S(z, E_{\nu}) \lambda(E_{\nu}^{-2})}.$

母分子各項を徹底的に説明するよう、予備審査でcommentを頂きました

Fluence Limit for v (4~100MeV) $\Phi_{lowe} = \frac{N_{90}}{N_T \int dE_{\nu} \lambda(E_{\nu}) \sigma(E_{\nu}) R(E_e, E_{vis}) \epsilon(E_{vis})},$

 N_{90} : 90% integral when considering a Poisson Distribution by expected rate. (N_{90} =2.3)

 N_T : Number of Target Nuclei in SK detector volume. (Proton for \overline{v}_e and electron for v_x)

 $\lambda(E_{\nu})$: neutrino energy spectrum

 $\sigma(E_{\nu})$: cross section for ν . (IBD for $\overline{\nu}_e$ and ES for ν_x)

 $R(E_e, E_{vis})$: Detector Response from E_e to E_{vis}

 $\varepsilon(E_{vis})$: Detection Efficiency for E_{vis}

 $\sigma(E_{\nu})$

 $\lambda(E_{\nu})$

全体面積が1になるように normalizeした

$\mathsf{R}(E_e, E_{vis}) \times \varepsilon(E_{vis})$

SK simulationで4~100MeVの neutrinoを発生してタンク内で反 応させ、data sampleのreduction efficiencyを考慮した上で最終的 な検出効率を見積った。

PS1. 電子のenergyが低ければ低いほど、reduction efficiencyが悪くなる。

PS2. ESでは、弾かれる電子の energyは角度によって違う。IBDで 生成される陽電子energyは neutrino energyにしか依存しない。

Fluence Limit for v (100MeV~10GeV) $\Phi_{FC,PC} = \frac{N_{90}}{N_T \int dE_{\nu} \sigma(E_{\nu}) \epsilon(E_{\nu}) \lambda(E_{\nu}^{-2})},$

 N_{90} : 90% integral when considering a Poisson Distribution by expected rate. (N_{90} =2.3)

 N_T : Number of Target Nuclei in SK detector volume. (Oxygen)

 $\lambda(E_{\nu})$: neutrino energy spectrum

 $\sigma(E_{\nu})$: total cross section for ν .

 $\varepsilon(E_{\nu})$: Detection Efficiency for E_{ν}

 $\sigma(E_{\nu})$

 $\varepsilon(E_{\nu})$ of FC

Fluence Limit for v (1.6GeV~100PeV) $\Phi_{UPMU} = \frac{N_{90}}{A_{eff}(z) \int dE_{\nu} P(E_{\nu}) S(z, E_{\nu}) \lambda(E_{\nu}^{-2})}.$

 N_{90} : 90% integral when considering a Poisson Distribution by expected rate. (N_{90} =2.3)

 $A_{eff}(z)$: effective area depending on zenith angle

 $\lambda(E_{\nu})$: neutrino energy spectrum

 $P(E_{\nu})$: when a v come into SK, the possibility to make a detectable μ

 $S(z, E_v)$: shadowing of the neutrinos due to interactions in the earth

 $S(z, E_{\nu})$

vが地球を通り抜ける時、物質と反応せず、SK検出器に到達する確率

z-dependent UPMU fluence limit

赤:LIGO fitting data by 90%C.L. PS. GW170817が検出された時間は、発生源NGC4993はUPMUの感度ある半分にあった。

Fluence limit

APJL, Volume 850, Number 2

E²F [GeV²cm⁻²]

Summary

今まで行った研究は:

1、SK-Gdに向けた先行実験であるEGADS検出器の開発及び実験測定 2016年にfirst authorとして論文を発表しました

2、重力波GW170817に伴うニュートリノ信号の探索 ← 博士論文のmain theme 2018年に、corresponding authorとして論文を発表しました

3、SRNのバックグランドを見積る為、大気ニュートリノのCCQE反応からの脱励起ガ ンマ線の探索 論文執筆が終りました。卒業するまで発表する予定

Backup

SKにおける大気ニュートリノCCQE反応 に関する解析

超新星背景ニュートリノ

超新星爆発背景ニュートリノ(Supernova Relic Neutrinos, SRN)

宇宙に最初の星ができて以来、超新星爆発は約1秒に1回の頻度で絶えず起きており、その都度、ニュートリノや重元素物質が宇宙にまき散らされている。こういった

ニュートリノは、背景として現在の宇宙に大量(ー方、ニュートリノは超新星の芯から外 に直接出ることができる唯一の素粒子で あるので、超新星爆発のメカニズムや中 性子星・ブラックホール形成過程を「見る」 唯一(?)の手段であると期待されている。 また、超新星背景ニュートリノの観測は 宇宙の歴史と大質量星の進化過程に繋 がる。

超新星爆発背景ニュートリノは未だに観 測された事がありません。

SK-Gd

ガドリニウムを入れると、逆ベータ崩 壊は遅延信号ができて、他の反応と 区別できる。

SK-Gd計画とEGADS実験

Kamioka鉱山内部のEGADS実験

SKに0.2%Gdを導入するのが目標!

Evaluating Gadoliniums Action on Detector Systems

240本PMTを取り付けた200トン検出器

Oxygen de-excitation γ

de-excitation occurs when $1p_{3/2}$ or $1s_{1/2}$ is knock out.

 $(1p_{1/2} \text{ case is stable})$

PHYSICAL REVIEW D 90, 072012 (2014)

	$1p_{1/2}$	$1p_{3/2}$	$1s_{1/2}$
Spectroscopic factors	0.632	0.703	0.422
> 6 MeV from p hole	0%	91.8%	14.7%
> 6 MeV from <i>n</i> hole 3–6 MeV from either	$0\% \\ 0\%$	$86.9\% \\ 0\%$	14.7% 27.8%

SF is from calculation, branching ratio of each state Is from electron/proton beam experiment.

Br(γ>6MeV) = 4/16 * 0.703 * 91.8% + 4/16 * 0.703 * 86.9% + 2/16 * 0.422 * 14.7% + 2/16 * 0.422 * 14.7% = 33%

CCQE cases and $Br(\gamma)$

1で観測できるのはdecay eのみで、除去不可のバックグランドになる(主にSRN解析で)。さらに、中性子が弾き出される場合もあり、SK-Gdにおいても除去不可になる。

3&4を区別できれば、Br(γ)がわかる。(FC μ sampleを利用し、同一event内で6MeV γを探す)

さらに2の数が分かれば、1を見積ることができる。

Plan

3&4を区別する可能性をSimulationで検討し、μ事象の中でγを探す手法を確立する。

2のγ + e pairを探して、脱励起ガンマ線のSampleを作る。

大気ニュートリノのFlux、CCQE反応のcross section理論値、SKの検出効率を考慮した上で、事象数の予想値を出して上記の結果と比較する。

脱励起ガンマ線のSampleを利用して、FC dataでBr(γ)を出す。

SK EVENT DISPLAY

SK Simulation of 300MeV/c μ + 6MeV γ

How to search for a γ inside a μ

- 1. 散乱と反射は、Cherenkov光子より長い距離を走る為、hit時間が遅れる
- 2. Dark noiseはPMT自身の電気ノイズで、時間的にrandomに分布する
- 3. Cherenkov光子なら、vertex->PMTのvectorとµの進行方向は42°
- 4. 脱励起γは全方向に出る
- 5. μ+γの事象では、μの方向が再構成される

 γ [0.18,0.31,-0.93]6.0MeV/c μ [-0.45,0.04,0.89]300.0MeV/c [-431.1cm,609.4cm,-768.1cm]

Simulation

 \pm 10ns T-Tof cut can remove dark/refl/scat

In this Fig :

300MeV/c μ and 6MeV γ

Build Likelihood from Hit Map

Hits in (T0-10ns, T0+10ns) can be separated into 3 categories:

1. $-1 < \cos\theta < -0.34$ Mainly γ hits, with a little delta ray hits

2. -0.34 < $\cos\theta$ < 0.6 Mainly delta ray hits, with a little possible y hits

3. $0.6 < \cos\theta < 1$ Mainly μ Cherenkov hits, with a little delta ray hits or a little possible γ hits

How to classify w/o γ

300MeV/c μ simulation, Signal is generated with uniform 6MeV/c γ , BG means no γ events

nhit1 : hits number in $-1 < \cos\theta < -0.34$ nhit2 : hits number in $-0.34 < \cos\theta < 0.6$ nhit3 : hits number in $0.6 < \cos\theta < 1$

Use 1 and 2 to make likelihood (3 is too similar)

$300 MeV/c \mu + w/o \gamma$

TMVA response for classifier: Likelihood

How to calculate $Br(\gamma)$

Signal : CCQE with γ BG : CCQE without γ Eff : Cut Efficiency when cut at max significance

 $Br(\gamma) = N_s / (N_s + N_b)$

We can observe N_{total} , but don't know N_s and N_b

$$\begin{cases} N_s + N_b = N_{total} \\ N_s \times Eff_s + N_b \times Eff_b = N'_{total} \end{cases}$$

Gamma + Decay Electron(Data)

Still Need To do.....

2のγ + e pairを探して、脱励起ガンマ線のSampleを作る。

大気ニュートリノのFlux、CCQE反応のcross section理論値、SKの検出効率を考慮した上で、事象数の予想値を出して上記の結果と比較する。 ×

X

脱励起ガンマ線のSampleを利用して、FC dataでBr(γ)を出す。

SK phase

Phase	SK-I	SK-II	SK-III	SK-IV	SK-Gd
Start	Apr 1996	Oct 2002	Jul 2006	Sep 2008	Nov 2018
End	Jul 2001	$Oct \ 2005$	$Aug \ 2008$	Jun 2018	Running
ID PMT	11146	5182	11129	11129	11129
OD PMT	1885	1885	1885	1885	1885
PMT Coverage	40%	19%	40%	40%	40%
Electronics	ATM	ATM	ATM	\mathbf{QBEE}	QBEE
Energy Thre.	$4.5 \mathrm{MeV}$	$6.5 \mathrm{MeV}$	$4.0 \mathrm{MeV}$	$3.5 \mathrm{MeV}$	-

SKI -> SKII 事故により、PMTが半滅

SKII -> SKIII PMTに衝撃波防止の為のAcrylic Coverを付けた上、11129本PMTが復帰 SKIII -> SKIV Electronicsのupgrade (ATM->QBEE, Hardware Trigger -> Software Trigger) SKIV -> SK-Gd 硫酸ガドリニウム水和物(Gd₂(SO₄)₃・15H₂O)を超純水に溶かす

Vertex x-y of the 7 events GW170817 y cm 1500 1000 500 0 ***. -500 events . pipe center -1000 pipe 1m pipe 2m pipe 3m -1500 -1500 -1000 -500 500 1000 1500 0 x cm GW170817 y cm 100 50 0 -50 -100 -150 events -200 pipe center pipe 1m -250 pipe 2m

-300

-1200

-1100

-1000

-900

-800

-700

pipe 3m

-500

-400 x cm

-600

49

Vertex y-z and x-z of the 7 events

2 events left in relic sample in 14days after GW170817

cos to GW170817 0.0<bsenergy<999999.0 -1.00<cosgw<1.00 -1.000<tdiff_pre<999999999999999999.000

CCQE cases and $Br(\gamma)$

3&4を区別するのは可能。ただし、実際の場合、脱励起ガンマ線は単純の6MeVよりかなり複雑(6.18MeV、6.32MeV、9.93MeV)。

2のγ + e pairを探して、脱励起ガンマ線のSampleを作る。

CCQE De-excitation γ in SK

- 1. γが見付かれば、後35µsのgateで全eventが記録される。
- ただし、raw dataに戻るのは、計算機処理時間は現実的ではない(数ヶ月 ~半年程度)。
- 3. 6MeVはsolar neutrinoと同じenergy領域の為、この博士論文では、SK-IVの 10年間のdataを利用し、solar reductionのfirst stepからstartした。

Other cuts included in solar reduction step: bswallsk < 2m, ltimediff < 50µs, spaloglike < 4.517.....

Decay time

Most of the background are removed by energy selection.

New problem : The "Pre-Gamma" can be weak muons close to Cherenkov Threshold!

Cherenkov Angle Fit

- 1. Select PMT hits in 15ns time window by T-Tof
- 2. Calculate the angle from vertex to the triangle of all 3-PMT sets
- 3. Search for the highest position by taking the sum of near 7-bins

Cherenkov Angle Fit

- 1. Select PMT hits in 15ns time window by T-Tof
- 2. Calculate the angle from vertex to the triangle of all 3-PMT sets
- 3. Search for the highest position by taking the sum of near 7-bins

v(MeV) Emission from NS-NS merger

Thermal v from NS-NS merger

- 1. $e^- e^+$ production from thermal photon
- 2. v_e/\overline{v}_e from e capture by nuclei : $e^- + p \rightarrow v_e + n$, $e^+ + n \rightarrow \overline{v}_e + p$
- 3. v_x/\overline{v}_x from e^-e^+ annihillation $e^+ + e^- \rightarrow v_x + \overline{v}_x$
- 4. Spectrum can be approximated by Fermi-Dirac Dis.
- 5. Most of energy emitted in 10ms, by v in 10~30MeV

