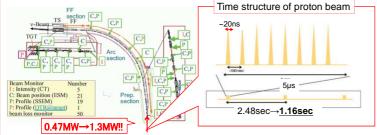

Development of proton beam position and profile interlock module at J-PARC, T2K experiment Saki Yamasu (Okayama.U)

T2K(Tokai to Kamioka) is a long baseline neutrino oscillation experiment in Japan.T2K has observed $v_{\mu} \rightarrow v_{e}$ or $\overline{v_{\mu}} \rightarrow \overline{v_{e}}$ oscillation. v_{μ} or $\overline{v_{\mu}}$ beam is generated in J-PARC (Japan Proton Accelerator Research Complex) and go to SK(Super-Kamiokande). Neutrino beam is observed in J-PARC and SK , and check $v_{\mu} \rightarrow v_e$ or $\overline{v_{\mu}} \rightarrow \overline{v_e}$

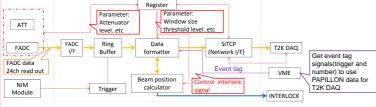
oscillation to compare these observation


T2K is planning to increase the number $v_{\mu} \rightarrow v_{e}$ and $\overline{v_{\mu}} \rightarrow \overline{v_{e}}$ oscillation statistics for CP violation in neutrino more than 3σ

is. r of the s to search o C.L.		Now	future
	Bean power[MW]	0.47	1.3
	Proton per pulse	${}^{2.4}_{\times10^{14}}$	3.2×10^{1}
me shorter.	Rep.time[sec]	2.48	1.16

⇒Beam repetition time will becor <Proton beam line in J-PARC>

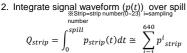
⇒T2K needs higher beam power.


Various beam monitors are located on the proton beam line of the J-PARC T2K experiment and observe beam strength and position, profile, beam loss and check a beam not to be out of the track of the beam.

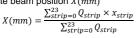
3.FPGA firmware development

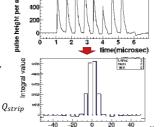
<FPGA firmware function>

- 1. Beam position calculation
- 2. Read out beam signal per strip, beam position, interlock status.
- Control board to use T2K DAQ (threshold level, interlock, strip position...) 3 TOP module in FPGA firmw


<The beam position calculation method=papillon calculation method> SSEM19Xch11

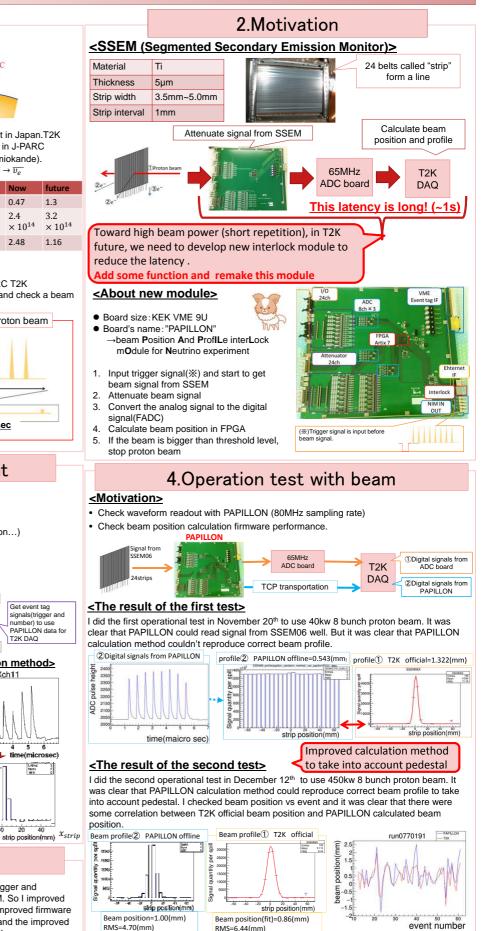
strip[ADC] e0**n**


height per


600

1. Get each strip signal waveform per spill (p(t))from FADC

3. Gather 24 Qstrip values and make beam profile, calculate beam position X(mm)



⇒Measured the latency to calculate beam position and shot interlock is 9.04µs

5. Future prospect

I found some problems in the second beam test, PAPILLON received trigger and calculated beam position though there were no proton beam hit in SSEM. So I improved calculation method to set threshold level of Q_{strip} value. I checked this improved firmware using simulation and it is confirmed that the interlock error is recovered and the improved firmware calculation is consistent with T2K official calculation within ± 0.1 mm

Event number	2017/12/12 T2K official(mm)	Improved firmware simulation Using 2017/12/12 data(mm)	2017/12/12 Firmware calculation (mm)	Threshold Threshold the subtrief of the subtri
5(no beam)	No analyzation	-1	9.71 (shot interlock)	
20	0.86	0.92	0.42	
30	0.07	0.01	-0.16	
40	1.20	1.30	1.83 (shot interlock)	
50	0.62	0.68	0.17	
60	0.77	0.79	0.07	

6.Conclutsion

RMS=6.44(mm)

Toward high beam power (short repetition) in T2K future, I developed the proton beam position and profile interlock module , PAPILLON. I did operation test and checked firmware performance. I improved the firmware based on the beam test results. The improved firmware calculation is consistent with T2K official calculation within ±0.1mm. I will install PAPILLON to T2K experiment in this March

Unification and Development of the Neutrino Science Frontier 05/03/2018