CCQE de-excitation γ ray in Super-K

Chenyuan Xu 徐宸原 Okayama University 岡山大学

Super-KamiokaNDE

Key word :

1000m UndergroundWater Cherenkov Detector50kton pure water22.5kton Fiducial Volume11146 PMTs in Inner Detector

SK phase : SK-I : 1996~2001 SK-II : 2002~2005 SK-III : 2006~2008 SK-IV : 2008~2018 SK-Gd : Under Work !

Br($\gamma \sim 6 MeV$)

Q : Why need $Br(\gamma)$?

A : If μ from CCQE is invisible, 1-Br(γ) of them will leave a decay e in SRN spectrum. De-excitation γ also caused an uncertainty term in T2K and other analysis.

Q : How much is $Br(\gamma)$?

A : Br(γ) = ~40% predicted, but no direct measurement. (Some indirect measurement by electron/proton beam has been performed)

Q : How to measure Br(γ)? / How to find isotropic ~6MeV γ in a μ event ?

A : $300 \text{MeV/c} \mu$ has ~500 hits in 1.3 μ s gate, while 6MeV γ has ~30 hits. μ vertex/dir is known by reconstruction. Use simulation to help understand.

SK EVENT DISPLAY

SK Simulation of 300MeV/c μ + 6MeV γ

delta ray basic process: $\mu + e \rightarrow \mu + e$

When μ loss energy by "ionization", it is really by scattering electrons from a few eV to a few tens MeV. γ [0.18,0.31,-0.93]6.0MeV/c μ [-0.45,0.04,0.89]300.0MeV/c [-431.1cm,609.4cm,-768.1cm]

Simulation

From this Fig :

- Reflected photons can never go to backwards half because they happen on neighbor PMTs.
- 2. Scattered photons are slow because their travel longer distances.
- 3. \pm 10ns T-Tof cut can remove dark/refl/scat

300MeV/c μ and 6MeV γ

Build Likelihood from Hit Map

Hits in (T0-10ns, T0+10ns) can be separated into 3 categories:

1. $-1 < \cos\theta < -0.34$ Mainly γ hits, with a little delta ray hits

2. $-0.34 < \cos\theta < 0.6$ Mainly delta ray hits, with a little possible y hits

3. $0.6 < \cos\theta < 1$ Mainly μ Cherenkov hits, with a little delta ray hits or a little possible γ hits

How to classify w/o γ

300MeV/c μ simulation, BG means no γ events, SG is generated with uniform 6MeV/c γ nhit1 : hits number in -1 < cos θ < -0.34 nhit2 : hits number in -0.34 < cos θ < 0.6 nhit3 : hits number in 0.6 < cos θ < 1

Use 1 and 2 to make likelihood (3 is too similar)

$300 MeV/c \mu w/o \gamma$

How to calculate $Br(\gamma)$

Signal : CCQE with γ BG : CCQE without γ Eff : Cut Efficiency when cut at max significance

 $Br(\gamma) = N_s / (N_s + N_b)$

We can observe N_{total} , but don't know N_s and N_b

$$\begin{cases} N_s + N_b = N_{total} \\ N_s \times Eff_s + N_b \times Eff_b = N'_{total} \end{cases}$$

Summary & Future

1. Introduced how to measured Br(γ) of ν_{μ} CCQE de-excitation γ

2. Paper writing & Real data analysis in future

3. In this talk, I only did 6MeV γ simulation, but in real case it should be a mix of 6.18 MeV, 6.32 MeV, 9.93MeV or even secondary γ .

4. With coincident search of γ and decay e, a sample of de-excitation γ can be made. And Br(γ) measurement may be better in SK-Gd.

Backup

Oxygen de-excitation γ

de-excitation occurs when $1p_{3/2}$ or $1s_{1/2}$ is knock out.

 $(1p_{1/2} \text{ case is stable})$

SF is from calculation, branching ratio of each state Is from electron/proton beam experiment.

 $1p_{1/2}$

0.632

0%

0%

0%

 $1p_{3/2}$

0.703

91.8%

86.9%

0%

 $1s_{1/2}$ 0.422

14.7%

14.7%

27.8%

 $Br(\gamma > 6MeV) = 4/16 * 0.703 * 91.8\% + 4/16 *$ 0.703 * 86.9% + 2/16 * 0.422 * 14.7% + 2/16 * 0.422 * 14.7% = 33%

SK EVENT DISPLAY

How to classify w/o γ

Hits in (T0-10ns, T0+10ns) can be separated into 3 categories:

1. $-1 < \cos\theta < -0.34$ Mainly γ hits, with a little delta ray hits

2. $-0.34 < \cos\theta < 0.6$ Mainly delta ray hits, with a little possible γ hits

3. 0.6 < $\cos\theta$ < 1 Mainly μ Cherenkov hits, with a little delta ray hits or a little possible γ hits