スーパーカミオカンデにおける 超新星ニュートリノの観測

小汐由介 (岡山大学)

東北大学 2017年1月19日

Introduction

Review of the SN1987A in LMC

at 50 kpc, ν 's seen ~2.5 hours before first light

Water-Cherenkov detector

Kamiokande (1983-1995) kamioka mine (2700mwe)

3000トン水タンク、約1000本の光電子増倍管

2017年1月19日

'Event' in Kamiokande

Energy, position, direction of each event are reconstructed using PMT-hit timing and pattern

SN1987A in Kamiokande

Realtime detector

- •Date : 23 Feb. 1987
- •Time: 07:35:35 (UT)
- •11 events in 13 sec.

Energy is determined by the number of hit PMTs for which the residual time (T-Tof) is ± 15nsec

Trigger if 20 hits within 100 nsec ~ 7.5 MeV (@50% eff.)

Review of the SN1987A in LMC

SN neutrino temperature and energy

Most of them seems to $\overline{\nu_e}$ event

PRD 54 (1996) 1194

Review of the SN1987A in LMC

Angular distribution ν_e event ?

東北大学

Targets of Supernova neutrino

Neutrino interaction for supernova neutrino detection

Inverse beta decay

 $\overline{\nu}_{e} + p \rightarrow e^{+} + n$ (Charged Current interaction)

- \checkmark Dominates for detectors with lots of free proton
 - Detect positron signal in water, scintillator, etc.
- $\sqrt{v_e}$ sensitive
- \checkmark Obtain the neutrino energy from the positron energy
 - E_e ~ E_v (m_n m_p), E_v > 1.86MeV
- \checkmark Well known cross section
- \checkmark Poor directionality
- \checkmark Neutron tagging using delayed coincidence

• n + p
$$\rightarrow$$
 d + γ , n + Gd \rightarrow Gd + γ

Inverse beta decay

$$\overline{\nu}_{e}$$
 + p \rightarrow e⁺ + n

- $\checkmark Dominates for detectors v$
 - Detect positron signal in w
- $\sqrt{v_e}$ sensitive
- \checkmark Obtain the neutrino energ
 - $E_e \sim E_v (m_n m_p), E_v > 1.$
- ✓ Well known cross section
- Poor directionality
- \checkmark Neutron tagging using de

• n + p \rightarrow d + γ , n + Gd \rightarrow C

Strumia, Vissani Phys. Lett. B564 (2003) 42

Inverse beta decay

$$\overline{\nu}_{e} + p \rightarrow e^{+} + n$$

- ✓ Dominates for detectors with lots of free provident of the provident
 - Detect positron signal in water, scintillator, etc.
- $\sqrt{v_e}$ sensitive
- \checkmark Obtain the neutrino energy from the positron energy
 - E_e ~ E_v (m_n m_p), E_v > 1.86MeV
- ✓ Well known cross section

Possible to enhance this signal if Gd loaded

- \checkmark Poor directionality
- ✓ Neutron tagging using delayed coincidence
 - n + p \rightarrow d + γ , n + Gd \rightarrow Gd + γ

Elastic scattering

 $\nu_{e,x} + e^{-} \rightarrow \nu_{e,x} + e^{-}$

(Both Charged Current and Neutral Current interaction)

✓ All neutrinos are sensitive ⁵
 ^{10²}
 ✓ The cross section for v_e is larger
 than others because of CC effect. ^{10⁻³}
 ✓ Well known cross section.

- few % of inverse beta decay
 ✓ Good directionality
- ✓ Measurable for only recoil
 electron energy, not neutrino energy
 2017年1月19日

東北大学

Elastic scattering

 $\nu_{e,x} + e^{-} \rightarrow \nu_{e,x} + e^{-}$

(Both Charged Current and Neutral Current interaction)

✓ All neutrinos are sensitive
 ✓ The cross section for v_e is larger than others because of CC effect.
 ✓ Well known cross section.
 few % of inverse beta decay
 ✓ Good directionality
 ✓ Measurable for only recoil electron energy, not neutrino energy

2017年1月19日

Water Cherenkov

SN search at Super-Kamiokande

Super-K to SK-Gd

value of θ_{13} prefers

Kamioka underground detectors

50kton Water Cherenkov detector

Super-Kamlokande

Run 1742 Event 102496 96-05-31:07:13:23 Inner: 103 hits, 123 pE Outer: -1 hits, 0 pE (in-time) Trigger ID: 0x03 E= 9.086 GDN=0.77 COSSUN= 0.949 Solar Neutrino

For supernova neutrinos (~MeV)

How to reconstruct?

Detector performance

Resolution@10MeV Information

vertex	55cm	hit timing
direction	23deg.	hit pattern
energy	14%	# of hits.

~ 6 hits/MeV

well calibrated by LINAC / DT within 0.5% precision

$$E_e = 8.6 \text{ MeV (kin.)}$$

 $\cos \theta_{sun} = 0.95$

Movie

Nakazato et.al. ApJ.Suppl. 205 (2013) 2

http://asphwww.ph.noda.tus.ac.jp/snn/index.html

		Supernova models		BH	
Minit	Z	t _{revive} = 100ms	t _{revive} = 200ms	t _{revive} = 300ms	models
13 <i>M</i> _{solar}		<u>258kB</u>	<u>257kB</u>	256kB	
$20 M_{\rm solar}$	0.02	<u>258kB</u>	<u>257kB</u>	<u>257kB</u>	
30 $M_{ m solar}$		<u>257kB</u>	<u>257kB</u>	<u>255kB</u>	
50M _{solar}		257kB	256kB	256kB	
13 <i>M</i> _{solar}		258kB	257kB	257kB	
$20 M_{\rm solar}$	1	<u>258kB</u>	<u>257kB</u>	256kB	
30M-107	0.004	<u>4.97MB</u> (Shen)			
solar				2.69MB (LS220)	
$50 M_{\rm solar}$		259kB	258kB	257kB	on the solar parame

Figure 33 shows the all obtained from the global

at 10kpc, 4.5MeV energy thre show the larger value of θ_{12} , while in the

東北大学

value of θ_{13} prefers the global solar analysis find $\theta_{13} = 0.31 \pm 0.03$ (tan²) (inverse beta d $\theta_{12} = 0.31 \pm 0.03$ (tan²) $\theta_{13} = 0.03 \pm 0.03$ (t

Time variation of $\overline{\nu_e}$ +p at 10kpc

event rate

mean energy

Detection probability as a function of distance

 \checkmark v-e elastic scattering has good directionality.

✓ Direction of supernova can be determined with an accuracy of ~5 degree.

✓ Spectrum of ve events can be statistically extracted using the direction to supernova.

✓ If Gd loaded, it will be more accurate since v_e signal can be separated. (later)

Simulation of angular distribution

Diffuse Supernova Neutrino Background (Supernova Relic Neutrino)

Neutrinos emitted from past supernovae

2017年1月19日

東北大学

Current Super-K w/o neutron tagging

SK collaboration, Phys. Rev. D 85, 052007 (2012)

2017年1月19日

Current Super-K w/o neutron tagging

30

Background

For solar / SN neutrinos (~MeV)

SRN in upgraded Super-K

- Delayed coincidence
 - Suppress B.G. drastically for $\overline{v_e}$ signal
 - ΔT~20µsec
 - Vertices within ~50cm

GADZOOKS!

Dissolve Gadolinium into Super-K J.Beacom and M.Vagins, Phys.Rev.Lett.93 (2004) 171101

Proposed in 2004, but not so easy.

EGADS as R&D

(Evaluating Gadolinium's Action on Detector Systems)

- Purpose
- ✓Water transparency
- \checkmark How to purify
- ✓ How to introduce and remove
- ✓ Effect on detector
 ✓ Effect from
 environment neutrons
 ✓ etc.

R&D for Gd test experiment

Now working well

water transparency measurement

200 ton tank EGADS as R&D

15 ton buffer tank Control panel of circulation system

Filter

2017年1月19日

東北大学

EGADS as R&D

Very stable and continuous data taking

東北大学

Neutron tagging

n50_8_cut

Neutron capture time

	2178 <u>+</u> 44ppm	1055 <u>+</u> 21ppm	225 <u>+</u> 5ppm
Data	29.89 <u>+</u> 0.33	51.48 ± 0.52	130.1±1.7
MC	30.03 ± 0.77	53.45±1.19	126.2 ± 2.0

Neutron capture efficiency

Data	МС
84.36± 1.79%	84.51±0.33%

2017年1月19日

Approved by the Super-K collaboration in 2015

'Super-K Gd' or 'SK Gd'

Time line Given the current anticipated schedules, the expected time of the refurbishment is 2018.

Remaining work toward SK-Gd

New water purification system

Leak fixing

Leak fixing

Cover all the welded places with sealing materials

Cover with two materials. One is **BIO-SEAL** 197 (epoxy resin) which sneak into small gaps, the other is 'Material' (poly-urea) which allows more displacement.

Need to wait several hours to the next step BIO-SEAL 197 SUS SUS 2017年1月19日

'Material' (two layers) Primer between MineGuard and SUS

> Backer as a bank to keep the coating region

Working inside the Super-K

Reduction of RI background

Intrinsic radioisotopes in $Gd_2(SO_4)_3$ could add low energy background in ⁸B solar v region of spectrum

• BG reduction \rightarrow Purification of 100 tons of Gd₂(SO₄)₃

Typical $Gd_2(SO_4)_3$ on the market

Chain	Main sub- chain isotope	Radioactive concentration (<i>mBq/kg</i>)
²³⁸ U	²³⁸ U	50
	²²⁶ Ra	5
²³² Th	²²⁸ Ra	10
	²²⁸ Th	100
²³⁵ U	²³⁵ U	32
	²²⁷ Ac/ ²²⁷ Th	300

For DSNB

Expected signal ~5 events/year/FV

²³⁸U Spontaneous Fission:

~ 5.5 [
$$\gamma$$
(E γ >10.5 MeV) + 1n] / year / FV

1 order reduction

For solar neutrino

Current BG ~200 events/day/FV

U (n) ~320events/day/ FV

1 order reduction

• Th/Ra (β , γ)~3 x 10 ⁵ events/day/ FV

3 orders reduction

71

Achievements

U/Th measured by as well as ICP-MS

U [g(U)/g] (×10 ⁻⁹ ICP-MS (Ge検出器)	Th [g(Th)/g] (×10 ⁻⁹ ICP-MS (Ge検出器)	
0.26±0.01 (<2.02)	0.19±0.01 (<0.22)	
0.25±0.03 (<1.18)	0.05±0.02 (<0.12)	
0.19±0.04 (<4.78)	0.06±0.02 (<0.34)	
0.26±0.03 (<0.71)	0.06±0.02 (<1.45)	
Typical : 4x10 ⁻⁹	Typical : 25x10 ⁻⁹	
Goal: < 0.4x10 ⁻⁹	Goal: < 0.02x10 ⁻⁹	
Achieved!	~1/3 more for goal	
	U [g(U)/g] (×10 ⁻⁹ ICP-MS (Ge検出器) 0.26±0.01 (<2.02) 0.25±0.03 (<1.18) 0.19±0.04 (<4.78) 0.26±0.03 (<0.71) Typical : 4x10 ⁻⁹ Goal : < 0.4x10 ⁻⁹ Achieved!	

Physics expectation in SK-Gd

Expected signal of Supernova Relic Neutrinos events/10years/2MeV 2MeV Teff: 8 MeV Teff: 6 MeV 7 7 SRN signal events/10years/ 6 6 Assumption: SRN signal 90% neutron capture efficiency 5 5 • 74% Gd γ detection efficiency • Invisible muon B.G. is 35% of ones 3 3 in the SK-IV invisible muon 2 invisible muon 2 (factor 5 reduction by n-tag.) (factor 5 reduction by n-tag.) atmospheric 0 0 25 30 35 40 45 50 15 20 35 10 15 20 10 25 30 45 50 40 visible energy (MeV) visible energy (MeV) 8 8 events/10years/2MeV /2MeV Teff: 4 MeV Teff: SN1987A 7 7 events/10years/ 6 6 10~45 SRN events in 5 5 10 years data taking SRN sign SRN signa (E_{vis}=10-30MeV) 3 3 invisible muon 2 invisible muon 2 (factor 5 reduction by n-tag.) (factor 5 reduction by n-tag.) 30 35 40 25 45 50 15 20 10 20 25 30 15 50 35 40 45 47 ayama

visible energy (MeV)

visible energy (MeV)

Physics expectation in SK-Gd

Background originated from atmospheric ν

Background related

De-excitation gamma ray after NCQE interaction

- Never had been observed yet. T2K measured it^{*}.
- One of signal from supernova neutrinos in Super-K.
- Same interaction from atmospheric neutrinos is one of main B.G. for supernova relic neutrinos in SK-Gd.
- Search for sterile neutrinos, low-mass dark matter.

NCQE cross section in T2K

NCQE cross section in T2K

De-excitation gamma ray after NCQE interaction

Neutron beam experiment in RCNP

Measure the energy and multiplicity of γ -rays from neutron interaction for water target

 Monochromatic and various neutron energies are available. It agrees with the neutron energy in T2K experiment.

- ✓ Good BG separation using ToF information.
- ✓ Big tunnel, facilitate the detector setting.

Neutron beam experiment in RCNP

Pilot experiments were successful

Physics expectation in SK-Gd

For Supernova burst neutrinos

 ✓ v-e elastic scattering has good directionality.
 ✓ Direction of supernova can be determined with an accuracy of 4~5 degree.
 ✓ Spectrum of v_e events can be statistically extracted using the direction to supernova.

✓ If Gd loaded, it will be more accurate since v_e signal can be separated.

✓ Sensitive to Si burning,
800~2000 ev/day at 200pc

Physics expectation in SK-Gd

For Supernova burst neutrinos

 \checkmark v-e elastic scattering has good directionality.

✓ Direction of supernova can be determined with an accuracy of 4~5 degree.

✓ Spectrum of v_e events can be statistically extracted using the direction to supernova.

✓ If Gd loaded, it will be more accurate since v_e signal can be separated.

✓ Sensitive to Si burning,
800~2000 ev/day at 200pc

In future

Hyper-Kamiokande

Supernova at Hyper-Kamiokande

http://www-sk.ic	rr.u-tokyo.ac.jp/indico/conferenceDisplay.py?confld=2935	2
\leftrightarrow \rightarrow \bigcirc \bigcirc www-sk.icrr.u-toky	p.ac.jp/indicc/conferenceDisplay.py?confId=2935 📩 🛱 🖪	:
A M 4 🔺 More 🗸	Asia/Tokyo English - Logged in as users, S. Logo	out
Workshop on S	Supernova at Hyper-Kamiokande	
12-13 February 2017 Ko Asia/Tokyo timezone	oshiba hall, University of Tokyo	
	30 years from SN1987A and the future	
Overview Scientific Programme Timetable Registration	Hyper-Kamiokande represents the next generation of large water Cherenkov detectors. It is to be a multi- purpose detector, whose capabilities shall include the precision study of neutrino oscillations; proton decay searches; and the observation of astro-particle neutrinos, such as supernova neutrinos, solar neutrinos, and high energy astro neutrinos. Due to Hyper-Kamiokande's unprecedented reach in all of these areas, it will provide a wealth of possibilities for new discoveries and deepen our understanding of nature.	
Registration Form	In this workshop, we will discuss the supernova neutrino research that will be conducted by Hyper- Kamiokande and several other near-future detectors, as well as Hyper-Kamiokande's potential for studying the other types of astro-particle neutrinos.	
Support	Since February 2017 marks the 30th anniversary of SN1987A, we are also planning several memorial lectures commemorating the historic supernova neutrino observations made in 1987.	
	We are looking forward to seeing you at the workshop.	
	Thank you very much, LOC of the workshop (Y.Koshio, I.Shimizu, Y.Suwa, Y.Takeuchi, M.Yokoyama)	
	Dates: from 12 February 2017 08:00 to 13 February 2017 11:00	5

Summary

Let's go supernova!

Thanks