Supernova neutrino observation - Current status and future prospect -

Yusuke Koshio (Okayama university)

Particle Astrophysics Lunch at OSU 3rd February, 2018

30 years anniversary of SN1987A

(2017)

Workshop at Koshiba hall in U.of.Tokyo on February 12-13, 2017

http://www-sk.icrr.u-tokyo.ac.jp/indico/conferenceDisplay.py?confld=2935

Birthday cake

30 years anniversary of SN1987A

(2017)

No Supernova neutrino detection since then..

3rd February, 2018

OSU

No chance for Supernova neutrino detection for next hundred's years? We believe, yes!

Galactic Supernova burst

(a few per century)

Diffuse Supernova

Neutrino Background

Neutrino interaction for supernova neutrino detection

Inverse beta decay

 $\overline{\nu}_{e} + p \rightarrow e^{+} + n$ (Charged Current interaction)

- \checkmark Dominates for detectors with lots of free proton
 - Detect positron signal in water, scintillator, etc.
- $\checkmark \overline{\nu_e}$ sensitive
- \checkmark Obtain the neutrino energy from the positron energy
 - $E_e \sim E_v (m_n m_p), E_v > 1.86 MeV$
- \checkmark Well known cross section
- \checkmark Poor directionality
- \checkmark Neutron tagging using delayed coincidence
 - n + p \rightarrow d + γ , n + Gd \rightarrow Gd + γ

Inverse beta decay

 $\overline{\nu}_{e}$ + p \rightarrow e⁺ + n

- \checkmark Dominates for detectors v
 - Detect positron signal in w
- $\checkmark \overline{v_e}$ sensitive
- \checkmark Obtain the neutrino energ
 - $E_e \sim E_v (m_n m_p), E_v > 1$.
- ✓ Well known cross section
- \checkmark Poor directionality
- \checkmark Neutron tagging using de

• n + p \rightarrow d + γ , n + Gd \rightarrow C

Strumia, Vissani Phys. Lett. B564 (2003) 42

Inverse beta decay

$$\overline{\nu}_{e} + p \rightarrow e^{+} + n$$

- ✓ Dominates for detectors with lots of free procession
 - Detect positron signal in water, scintillator, etc.
- $\checkmark \overline{\nu_e}$ sensitive
- \checkmark Obtain the neutrino energy from the positron energy
 - $E_e \sim E_v (m_n m_p), E_v > 1.86 MeV$
- ✓ Well known cross section
- Possible to enhance this signal if Gd loaded

- \checkmark Poor directionality
- \checkmark Neutron tagging using delayed coincidence
 - n + p \rightarrow d + γ , n + Gd \rightarrow Gd + γ

OSU

Elastic scattering

 $\nu_{e,x}$ + $e^{-} \rightarrow \nu_{e,x}$ + e^{-}

(Both Charged Current and Neutral Current interaction)

✓ All neutrinos are sensitive $\frac{10^{-2}}{10^{-2}}$ ✓ The cross section for v_e is larger than others because of CC effect. 10^{-3} ✓ Well known cross section.

few % of inverse beta decay

- ✓ Good directionality
- ✓ Measurable for only recoil electron energy, not neutrino energy

3rd February, 2018

Elastic scattering

 $\nu_{e,x} + e^{-} \rightarrow \nu_{e,x} + e^{-}$

(Both Charged Current and Neutral Current interaction)

✓ All neutrinos are sensitive
 ✓ The cross section for v_e is larger than others because of CC effect.
 ✓ Well known cross section.
 few % of inverse beta decay
 ✓ Good directionality
 ✓ Measurable for only recoil electron energy, not neutrino energy

Water Cherenkov

0.4 Angular distribution between incident neutrino and recoil electron $E_V=10MeV$ 0.1 0.1 0.5 0 0.5 1 cos θ

SN search at Super-Kamiokande

Super-K to SK-Gd

e glob e larg e larg llues Δm_{21}^2 ND 1 d to Δm_{21}^2 is 0.0) at t ng wi $n^2 \theta_{13}$ sin² θ

spa

Kamioka underground detectors

3rd February, 2018

50kton Water Cherenkov detector

Super-Kamlokande

Run 1742 Event 102496 96-05-31:07:13:23 Inner: 103 hits, 123 pE Outer: -1 hits, 0 pE (in-time) Trigger ID: 0x03 E= 9.086 GEN=0.77 COSSUN= 0.949 Solar Neutrino

Time(ns)

- 1075-1095
 >1095

For supernova neutrinos (~MeV)

How to reconstruct?

Detector performance

Resolution@10MeV Information

vertex	55cm	hit timing	
direction	23deg.	hit pattern	
energy	14%	# of hits.	

~ 6 hits/MeV

well calibrated by LINAC / DT within 0.5% precision

OSU

1500

Time variation of $\overline{\nu_e}$ +p at 10kpc

event rate

mean energy

Diffuse Supernova Neutrino Background (DSNB)

Neutrinos emitted from past supernovae

3rd February, 2018

OSU

DSNB in Super-K

Upper limit from Super-K

SK collaboration, Phys. Rev. D 85, 052007 (2012)

DSNB in Super-K

Current Super-K w/o neutron tagging

DSNB in upgraded Super-K

- •Delayed coincidence
 - \bullet Suppress B.G. drastically for $\overline{v_e}$ signal
 - ΔT~20µsec
 - Vertices within ~50cm

GADZOOKS!

Dissolve Gadolinium into Super-K J.Beacom and M.Vagins, Phys.Rev.Lett.93 (2004) 171101

Proposed in 2004, but not so easy.

EGADS as R&D

(Evaluating Gadolinium's Action on Detector Systems)

Purpose ✓ Water transparency \checkmark How to purify ✓ How to introduce and remove \checkmark Effect on detector ✓ Effect from environment neutrons $\sqrt{\text{etc.}}$

R&D for Gd test experiment

Now working well

200 ton tank EGADS as R&D

15 ton buffer tank Control panel of circulation system

OSU

EGADS as R&D

Very stable and continuous data taking

3rd February, 2018

OSU

Neutron tagging efficiency

n50_8_cut

Neutron capture time

	2178 <u>+</u> 44ppm	1055 <u>+</u> 21ppm	225 <u>+</u> 5ppm
Data	29.89 <u>±</u> 0.33	51.48 ± 0.52	130.1±1.7
MC	30.03 ± 0.77	53.45 <u>+</u> 1.19	126.2±2.0

Neutron capture efficiency

Data	МС	
84.36± 1.79%	84.51 <u>±</u> 0.33%	

3rd February, 2018

Approved this project by the Super-K collaboration in 2015 as "Super-K Gd"

Remaining work toward SK-Gd

Leak fixing

J -

Leak fixing

Cover all the welded places with sealing materials

Cover with two materials. One is **BIO-SEAL** 197 (epoxy resin) which sneak into small gaps, the other is 'Material' (poly-urea) which allows more displacement.

Need to wait several hours to the next step **BIO-SEAL 197** SUS SUS

3rd February, 2018

'Material' (two layers) Primer between MineGuard and SUS

Backer as a bank to

Working inside the Super-K

'Super-K Gd' or 'SK Gd'

Time line Given the current anticipated schedules, the expected time of the refurbishment is 2018.

Physics expectation in SK-Gd

DSNB flux: Horiuchi, Beacom and Dwek, PRD, 79, 083013 (2009)

It depends on typical/actual SN emission spectrum

DSNB events number with 10 years observation

Total (positron) energy MeV

HBD models	10-16MeV (evts/10yrs)	16-28MeV (evts/10yrs)	Total (10-28MeV)	significance (2 energy bin)
T _{eff} 8MeV	11.3	19.9	31.2	5.3 σ
T _{eff} 6MeV	11.3	13.5	24.8	4.3 σ
T _{eff} 4MeV	7.7	4.8	12.5	2.5 σ
T _{eff} SN1987a	5.1	6.8	11.9	2.1 σ
BG	10	24	34	

Physics expectation in SK-Gd

For Supernova burst neutrinos

3rd February, 2018

OSU

In future

Cumulative calculated supernova rate

DSNB at Hyper-K

expected number of events

DSNB at Hyper-K

expected spectrum

Notional timeline (1st tank)

Selected 'Roadmap 2017' in MEXT (Japanese funding agency) as one of the 17 highest-priority large-scale projects in japan. We are aiming to start observation in 2026.

Summary

Let's go supernova!

Thanks