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30 years anniversary of SN1987A

Workshop at Koshiba hall in U.of.Tokyo 
on February 12-13, 2017, 

supported by the previous innovative area

http://www-sk.icrr.u-tokyo.ac.jp/indico/conferenceDisplay.py?confId=2935

30th Anniversary of SN1987A

2

Cake made for an anniversary held on 
Feb.12, 2017 at the Univ. of Tokyo

Cake made by Kamioka local people 
on Feb.23, 2017

Birthday cake

(2017)
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30 years anniversary of SN1987A

Kam-II  (11 evts.) 
IMB-3  (8 evts.) 
Baksan (5 evts.) 

24 events total 

No Supernova neutrino detection since then..

Workshop at Koshiba hall in U.of.Tokyo 
on February 12-13, 2017, 

supported by the previous innovative area

http://www-sk.icrr.u-tokyo.ac.jp/indico/conferenceDisplay.py?confId=2935

(2017)



No chance for Supernova neutrino 
detection for next hundred’s years?

We believe, yes!

1.

2.

3.

TIME AXIS

z = 0

"

"

z = 1

z = 5

We need information 
concerning...

WE ARE 

HERE.

2. Formulation and Models
How to Calculate the SRN Flux

Galactic Supernova burst 
(a few per century)

Diffuse Supernova 
Neutrino Background
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Why important for CCSNe?
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Neutrino interaction 
for supernova neutrino 

detection

νe,νe

p, n, e+n, p, e-

e-, e+

W

Charged Current
ν ν

n, p, e-

Z

Neutral Current

n, p, e-
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Neutrino interaction for SNν
Inverse beta decay νe + p → e+ + n

✓ Detect positron signal in water, 
scintillator, etc. 
✓ νe sensitive 
✓ Obtain the neutrino energy from 
the positron energy 

• Ee ~ Eν - (mn - mp), Eν > 1.86MeV 
✓ Well known and large cross 
section 
✓ Neutron tagging using delayed 
coincidence 

• n + p → d + γ, n + Gd → Gd + γ Strumia, Vissani 
Phys. Lett. B564 (2003) 42

νe+p

Total cross section for water 
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Neutrino interaction for SNν
Inverse beta decay νe + p → e+ + n

✓ Detect positron signal in water, 
scintillator, etc. 
✓ νe sensitive 
✓ Obtain the neutrino energy from 
the positron energy 

• Ee ~ Eν - (mn - mp), Eν > 1.86MeV 
✓ Well known and large cross 
section 
✓ Neutron tagging using delayed 
coincidence 

• n + p → d + γ, n + Gd → Gd + γ

νe!

e+!

p 
n 

γ#

γ#p 

Gd 
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Neutrino interaction for SNν
Elastic scattering

✓ Detect recoil electron signal in 
water, scintillator, etc. 
✓ All neutrinos are sensitive 
✓Measurable for only recoil electron 
energy, not neutrino energy 
✓ Well known cross section, few % 
of inverse beta decay 
✓ Good directionality

νe,x + e- → νe,x + e-

νe+p

Total cross section for water 

νe+e

νe+e
νx+e
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Neutrino interaction for SNν
Elastic scattering

✓ Detect recoil electron signal in 
water, scintillator, etc. 
✓ All neutrinos are sensitive 
✓Measurable for only recoil electron 
energy, not neutrino energy 
✓ Well known cross section, few % 
of inverse beta decay 
✓ Good directionality

Water Cherenkov

�� � 25�/
�

N

νe,x e-   

Eν=10MeV

Angular distribution 
 between incident neutrino 

and  recoil electron

νe,x + e- → νe,x + e-



SN search at 
Super-Kamiokande
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on the solar parameter space.
Figure 33 shows the allowed region in (θ12, θ13) space

obtained from the global solar analysis and our Kam-
LAND analysis. As shown in the figure, in the global
solar contour, the larger value of θ13 prefers the larger
value of θ12, while in the KamLAND contour the larger
value of θ13 prefers the smaller value of θ12. The
global solar analysis finds that the best fit values at
sin2 θ12 = 0.31±0.03 (tan2 θ12 = 0.44±0.06) and∆m2

21 =
6.0+2.2

−2.5 × 10−5eV2. Combined with the KamLAND re-
sult, the best-fit oscillation parameters are found to be
sin2 θ12 = 0.31+0.03

−0.02 (tan2 θ12 = 0.44+0.06
−0.04) and ∆m2

21 =

7.7± 0.3× 10−5eV2. The best fit value of sin2 θ13 is 0.01,
and an upper bound is obtained, sin2 θ13 < 0.060 at the
95% C.L., for the global solar analysis. Combining with
the KamLAND contour, the best fit value of sin2 θ13 is
0.025+0.018

−0.016 and the 95% C.L. upper limit of the sin2 θ13
is found to be 0.059.

∆
m

2  in
 e

V
2

x10
-4

1

2

sin
2
(Θ )

0.1 0.2 0.3 0.4 0.5

��

��

FIG. 32: Allowed region in solar parameter space (θ12,∆m2)
obtained by the three-flavor analysis. The thick lines and
the star mark show the allowed regions and the best fit point
of the global solar analysis. The thin lines and the square
mark show the allowed regions and the best fit point of our
KamLAND analysis. The filled areas and the filled circle
mark show the allowed regions and the best fit point of the
combined analysis. For all regions, the innermost area (red),
the middle area (green) and the outermost area (blue) show
68.3, 95, 99.7 % C.L. respectively.

The flux value of 8B neutrinos can be extracted using
the oscillation parameters obtained from the fitting of
the global solar and KamLAND result. As in Equation
4.1, β is a free parameter to minimize the χ2 and there
is no constraint from the SSM prediction in χ2

SK+SNO.
Table VII summarizes the scaled 8B flux values by us-
ing βm at the best fit point obtained by the global solar
analysis and the global solar + KamLAND analyses in
both two and three flavor analyses. The size of the error
corresponds to the maximum and minimum flux values
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FIG. 33: Allowed region in (θ12, θ13) space obtained by the
three-flavor analysis. The definitions of marks and lines are
same as in Figure 32.

8B flux (×106cm−2s−1)
Global solar (2 flavor) 5.3 ±0.2
Global solar + KamLAND (2 flavor) 5.1 ±0.1
Global solar (3 flavor) 5.3 ±0.2
Global solar + KamLAND (3 flavor) 5.3 +0.1

−0.2

TABLE VII: 8B neutrino flux obtained from the oscillation
parameter fitting.

among the 1σ oscillation parameter region. As shown in
the table, the 8B flux agrees well with the latest SSM
prediction [32], and the size of the uncertainty is 2 ∼ 3%
which is consistent with the SNO result [20].

V. CONCLUSION

Super-Kamiokande has measured the solar 8B flux to
be (2.32± 0.04(stat.)± 0.05(sys.))× 106 cm−2sec−1 dur-
ing its third phase; the systematic uncertainty is smaller
than for SK-I. Combining all solar experiments in a
two flavor fit, the best fit is found to favor the LMA
region at sin2 θ12 = 0.30+0.02

−0.01 (tan2 θ12 = 0.42+0.04
−0.02)

and ∆m2
21 = 6.2+1.1

−1.9 × 10−5eV2. Combined with the
KamLAND result, the best-fit oscillation parameters are
found to be sin2 θ12 = 0.31±0.01 (tan2 θ12 = 0.44±0.03)
and ∆m2

21 = 7.6± 0.2× 10−5eV2, in excellent agreement
with previous solar neutrino oscillation measurements.
In a three-flavor analysis combining all solar neutrino ex-
periments and the KamLAND result, the best fit value
of sin2 θ13 is found to be 0.025+0.018

−0.016 and an upper bound
is obtained as sin2 θ13 < 0.059 at 95% C. L..

ニュートリノ振動
２０００年代

SK
SNO (CC)
SNO (NC)

0 0.25 0.5 0.75 1

νe νx

1000t �� 

SNO

Super-Kamiokande

νe,x + e- → νe,x + e-
電子弾性散乱 (ES)

入射ニュートリノの方向を保存
高統計、高精度の測定
電子ニュートリノ反応断面積は
他のニュートリノの～７倍

νe + d → e- + p + p

太陽内部で
発生時

ニュートリノの種類を区別できる

荷電カレント (CC)

νx + d → νx + n + p
中性カレント (NC)

νe,x + e- → νe,x + e-
電子弾性散乱 (ES)

ニュートリノ振動パラメータ

Phys. Rev. D 83, 052010 (2011)

Solar + KamLAND

12年2月19日日曜日

Water system 

20� PMT 

W
ater transparency m

easurem
ent 

Super-K to SK-Gd

νe!

e+!

p 
n 

γ#

γ#p 

Gd 



7th February, 2018 GW-Genesis 12

Kamioka underground detectors

KAGRA
SuperK
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Super-Kamiokande

39.3m 

41.4m 

50kt water Cherenkov detector 
22.5kt fiducial volume 
 
         20�PMT  photocathode  
          (inner)       coverage  
SK-1  11,146        40% 
SK-2    5,182        19% 
SK-3  11,129        40% 

Placed inside the Kamioka mine 
1000m underground 

1000m 

SK 

Cherenkov light 

charged 
particle 

neutrino 

32kton fiducial volume for SN 
20’ PMT   photocathode 

(inner)      coverage 
SK-1     11,146         40% 
SK-2       5,182         19% 
SK-3     11,129         40% 
SK-4   same as SK-3 
          with new electronics

νe,x e-   

✓ Underground in Kamioka 
mine, (almost BG free) 
✓ 3.5MeV energy 
threshold for recoil electron 
✓ Dominant process is 
inverse beta decay 
✓ Good directionality for νe 
elastic scattering

charged 
particle θ

50kton Water Cherenkov detector
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Super-Kamiokande
For supernova neutrinos 

(~MeV)

ID

OD

vertex 55cm hit timing
direction 23deg. hit pattern
energy 14% # of hits.

Detector performance

~ 6 hits/MeV 
well calibrated by LINAC / 
DT within 0.5% precision

Ee = 8.6 MeV (kin.) 
cosθsun = 0.95

Resolution@10MeV   Information

How to reconstruct?
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Super-Kamiokande

Expected number of event

Livermore simulation 
Totani, Sato, Dalhed, Wilson, ApJ. 496 (1998) 216

7.3k~10.2k ev (inverse beta decay) 
320~380 ev (νe elastic scattering) 
12~610 ev (νe CC)  
95~580 ev (νe CC) 

at 10kpc, 4.5MeV energy threshold
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on the solar parameter space.
Figure 33 shows the allowed region in (θ12, θ13) space

obtained from the global solar analysis and our Kam-
LAND analysis. As shown in the figure, in the global
solar contour, the larger value of θ13 prefers the larger
value of θ12, while in the KamLAND contour the larger
value of θ13 prefers the smaller value of θ12. The
global solar analysis finds that the best fit values at
sin2 θ12 = 0.31±0.03 (tan2 θ12 = 0.44±0.06) and∆m2

21 =
6.0+2.2

−2.5 × 10−5eV2. Combined with the KamLAND re-
sult, the best-fit oscillation parameters are found to be
sin2 θ12 = 0.31+0.03

−0.02 (tan2 θ12 = 0.44+0.06
−0.04) and ∆m2

21 =

7.7± 0.3× 10−5eV2. The best fit value of sin2 θ13 is 0.01,
and an upper bound is obtained, sin2 θ13 < 0.060 at the
95% C.L., for the global solar analysis. Combining with
the KamLAND contour, the best fit value of sin2 θ13 is
0.025+0.018

−0.016 and the 95% C.L. upper limit of the sin2 θ13
is found to be 0.059.
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FIG. 32: Allowed region in solar parameter space (θ12,∆m2)
obtained by the three-flavor analysis. The thick lines and
the star mark show the allowed regions and the best fit point
of the global solar analysis. The thin lines and the square
mark show the allowed regions and the best fit point of our
KamLAND analysis. The filled areas and the filled circle
mark show the allowed regions and the best fit point of the
combined analysis. For all regions, the innermost area (red),
the middle area (green) and the outermost area (blue) show
68.3, 95, 99.7 % C.L. respectively.

The flux value of 8B neutrinos can be extracted using
the oscillation parameters obtained from the fitting of
the global solar and KamLAND result. As in Equation
4.1, β is a free parameter to minimize the χ2 and there
is no constraint from the SSM prediction in χ2

SK+SNO.
Table VII summarizes the scaled 8B flux values by us-
ing βm at the best fit point obtained by the global solar
analysis and the global solar + KamLAND analyses in
both two and three flavor analyses. The size of the error
corresponds to the maximum and minimum flux values
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FIG. 33: Allowed region in (θ12, θ13) space obtained by the
three-flavor analysis. The definitions of marks and lines are
same as in Figure 32.

8B flux (×106cm−2s−1)
Global solar (2 flavor) 5.3 ±0.2
Global solar + KamLAND (2 flavor) 5.1 ±0.1
Global solar (3 flavor) 5.3 ±0.2
Global solar + KamLAND (3 flavor) 5.3 +0.1

−0.2

TABLE VII: 8B neutrino flux obtained from the oscillation
parameter fitting.

among the 1σ oscillation parameter region. As shown in
the table, the 8B flux agrees well with the latest SSM
prediction [32], and the size of the uncertainty is 2 ∼ 3%
which is consistent with the SNO result [20].

V. CONCLUSION

Super-Kamiokande has measured the solar 8B flux to
be (2.32± 0.04(stat.)± 0.05(sys.))× 106 cm−2sec−1 dur-
ing its third phase; the systematic uncertainty is smaller
than for SK-I. Combining all solar experiments in a
two flavor fit, the best fit is found to favor the LMA
region at sin2 θ12 = 0.30+0.02

−0.01 (tan2 θ12 = 0.42+0.04
−0.02)

and ∆m2
21 = 6.2+1.1

−1.9 × 10−5eV2. Combined with the
KamLAND result, the best-fit oscillation parameters are
found to be sin2 θ12 = 0.31±0.01 (tan2 θ12 = 0.44±0.03)
and ∆m2

21 = 7.6± 0.2× 10−5eV2, in excellent agreement
with previous solar neutrino oscillation measurements.
In a three-flavor analysis combining all solar neutrino ex-
periments and the KamLAND result, the best fit value
of sin2 θ13 is found to be 0.025+0.018

−0.016 and an upper bound
is obtained as sin2 θ13 < 0.059 at 95% C. L..

ニュートリノ振動
２０００年代

SK
SNO (CC)
SNO (NC)

0 0.25 0.5 0.75 1

νe νx

1000t �� 

SNO

Super-Kamiokande

νe,x + e- → νe,x + e-
電子弾性散乱 (ES)

入射ニュートリノの方向を保存
高統計、高精度の測定
電子ニュートリノ反応断面積は
他のニュートリノの～７倍

νe + d → e- + p + p

太陽内部で
発生時

ニュートリノの種類を区別できる

荷電カレント (CC)

νx + d → νx + n + p
中性カレント (NC)

νe,x + e- → νe,x + e-
電子弾性散乱 (ES)

ニュートリノ振動パラメータ

Phys. Rev. D 83, 052010 (2011)

Solar + KamLAND

12年2月19日日曜日
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Diffuse Supernova Neutrino Background 
(DSNB)

Neutrinos emitted from past supernovae

1.

2.

3.

TIME AXIS

z = 0

"

"

z = 1

z = 5

We need information 
concerning...

WE ARE 

HERE.

2. Formulation and Models
How to Calculate the SRN FluxS.Ando

νe�

νe�

(Ando	model)�

KamLAND

νe�
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νe!

e+!

p!
n! γ#p!
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DSNB in Super-K
Current Super-K w/o neutron tagging

Only this signal

SK collaboration, Phys. Rev. D 85, 052007 (2012) 
SKでのSRN探索の現状（SK-I, II, IIIの結果） 

E (MeV) 

SK-I/III 
data 
νμ  CC 
νe CC 
NC elastic 
μ/π > C. thr. 
all background 
SRN signal 

Signal Events Low angle events Isotropic Events 

Qe e+ p 

n (invisible) 

42o 

μ, π 25-45o 
Q 

N 
Q 

reconstructed 
angle near 90o 

大気Q�
BG 

リングの開き角による仕分け 
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DSNB in upgraded Super-K
GADZOOKS!

νe!

e+!

p 
n 

γ#

γ#p 

Gd 

(2.2MeV)

~8MeV

•Delayed coincidence 
• Suppress B.G. drastically 
for νe signal 
• ΔT~20µsec 
• Vertices within ~50cm

Dissolve Gadolinium into Super-K 
J.Beacom and M.Vagins, 

 Phys.Rev.Lett.93 (2004) 171101
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Schedule of the Super-K Gd
Start refurbishment of Super-K on 1st June, 2018

2018 2019 2020 202X 202X
T0:Leak stop work (~4 months)

fill water (~2 months)
Operation by pure water

T1:Load first Gd2(SO4)3 up to 10ton

Observation T2:Load full Gd2(SO4)3

Observation

Neutron tagging efficiency : ~50%

100 ton 
~90% efficiency 

Stabilize water quality
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Leak fixingNext topic: fixing the SK Leak 

15 
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Leak fixing
Cover all the welded places 
with sealing materials

Cover with two materials. 
One is BIO-SEAL 197 (epoxy resin) 
which sneak into small gaps, the 
other is ‘Material’ (poly-urea) 

which allows more displacement.

SUS SUS

BIO-SEAL 197
‘Material’
Primer between 
MineGuard and SUS

Backer as a bank to 
keep the coating region

(two layers)Need to wait several 
hours to the next step

Inside SK tank
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Mock-up test in the underground
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Working inside the Super-KT2K Exotics Report 
 
 
 
 
  

Yusuke Koshio, Alexander Izmaylov 
for T2K Exotics WG 

May 28, 2016 
 T2K Collaboration Meeting 

 



Summary

Ready for the first discovery 
of the DSNB!

Thanks
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Physics expectation in SK-Gd
For Supernova burst neutrinos

ν̅e w/o tagging 

ν̅e tagged with 80% eff. 
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LSST

Subaru
Blanco

CFHT

ZTF

Pan-STARRS

Evryscope

ASAS-SN

1-2m 4m >8mNaked eye

K.Nakamura et. al. MNRAS 461, 3296 (2016)

SK
SK-Gd

HK
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Physics expectation in SK-Gd
Expected signal and sensitivity

• It depends on typical/actual  SN 
emission spectrum 

6

Total (positron) energy  MeV

ev
en

ts
/y

ea
r/

1.
5M

eV

DSNB flux:
Horiuchi, Beacom and Dwek, 
PRD, 79, 083013 (2009)

Expected total BG
Tn = 6MeV
Tn = 4MeV
Tn = 1987a 

HBD models 10-16MeV
(evts/10yrs)

16-28MeV
(evts/10yrs)

Total
(10-28MeV)

significance
(2 energy bin)

Teff 8MeV 11.3 19.9 31.2 5.3 s
Teff 6MeV 11.3 13.5 24.8 4.3 s
Teff 4MeV 7.7 4.8 12.5 2.5 s
Teff SN1987a 5.1 6.8 11.9 2.1 s
BG 10 24 34 ----

First observation is within SK-Gd’s reach! 

DSNB events number with 10 years observation



Proposed in 2004, 
but not so easy..
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(Evaluating Gadolinium’s Action on Detector Systems)

Purpose 
✓Water transparency 
✓How to purify 
✓How to introduce and 
remove 
✓Effect on detector 
✓Effect from 
environment neutrons 
✓etc.

Super-Kamiokande 
50m 

Water system 

20� PMT 

W
ater transparency m

easurem
ent 

New hall (10m(w)x15m(l)x9m(h))
200 ton tank

R&D for Gd test experiment

EGADS as R&D

Great success by the previous innovative area!
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EGADS as R&D200 ton tank

15 ton buffer tank Control panel of circulation system Filter

UDEAL
water transparency measurement
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Very stable and continuous data taking

EGADS as R&D
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Neutron tagging efficiency

Neutron tagging with delayed coincidence

2178±44ppm(� 1055±21ppm� 225±5ppm�

Data� 29.89±0.33� 51.48±0.52� 130.1±1.7�
MC� 30.03±0.77� 53.45±1.19� 126.2±2.0�

Neutron capture time

Data� MC�

84.36±&1.79%& 84.51±0.33%�

Neutron capture efficiency

Am/Be 

γ

��� 

Gd 4.4 MeV γ"

BGO 
�	��
��	� 

EGADS

241Am → 237Np + α 

 9Be + α→ 12C + γ(4.4MeV)+ n 

Gd γ#

�	���
����500µsec 

�	 
�� 
�	
�

�	 
�� 
�	
�


����
��� 
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DSNB in Super-K

It is notable that this result is less stringent than the 2003
result of 1:2 !! cm!2 s!1 positron energy >18 MeV. There
are multiple reasons for this.

First, a 0th order approximation of the inverse beta cross
section was then used. Now, the full cross section from [25]
is used. This raises the limit by about 8%. If events with
postactivity are also removed, the old-style analysis limit
becomes 1:35 cm!2 s!1. Furthermore, the binned "2

method used assumed Gaussian statistics, while
Poissonian statistics are more appropriate considering the
low statistics. This alone would change the limit from 1.2
to 1:7 cm!2 s!1. When all these corrections are combined,
the original analysis result of 1:2 !! cm!2 s!1 instead be-
comes 1:9 !! cm!2 s!1.

With our improved analysis, if we neglect atmospheric !
background systematics (which were not fully included in
the 2003 study), the SK-I only LMA result is
1:6 !! cm!2 s!1 (> 18 MeV positron energy), which is
more stringent than the published analysis with these cor-
rections. However, the SK-II and SK-III data show a hint of
a signal, which causes the limit to become less stringent
when all the data are combined, for the final LMA result
(with all systematics) of 2:0 !! cm!2 s!1 > 18 MeV posi-
tron energy, or 2:9 !! cm!2 s!1 > 16 MeV positron energy.

B. Typical SN ! emission limit

Most of the elements involved in a comprehensive pre-
diction of the SRN flux are now fairly well-known [32]
(e.g., initial mass functions, cosmic star formation history,
Hubble expansion, etc.), and thus we can parametrize
typical supernova neutrino emission using two effective
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FIG. 17 (color). True positron spectra in SK for each neutrino
temperature, from 3 to 8 MeV in 0.5 MeV steps (SN !!e

luminosity of 5" 1052 ergs assumed).
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FIG. 18 (color online). Results plotted as an exclusion contour
in SN neutrino luminosity vs neutrino temperature parameter
space. The Irvine-Michigan-Brookhaven (IMB) and
Kamiokande allowed areas for 1987A data are shown (originally
from [35]) along with our new 90% C.L. result. The dashed line
shows the individual 90% C.L. results of each temperature
considered separately, which is not a true two-dimensional
exclusion contour. Results are in the form of Fig. 6 from [32].
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FIG. 19 (color online). Exclusion contour plotted in a parame-
ter space of SRN event rate vs neutrino temperature. The red
shaded contour shows our 90% C.L. result. The dashed line
shows the individual 90% C.L. results of each temperature
considered separately, which is not a true two-dimensional
exclusion contour. CGI is cosmic gas infall model, HMA is
heavy metal abundance model, CE is chemical evolution model,
LMA is large mixing angle model, FS is failed supernova model,
and the 6 and 4 MeV cases are from [13]. For the 4 and 6 MeV
cases a total uncertainty is provided and shown, and the HMA
model gives a range which is shown. Other models have no given
range or uncertainty and are represented by a star.

TABLE V. 90% C.L. flux limit ( !! cm!2 s!1), E! > 17:3 MeV.

Model SK-I SK-II SK-III All Predicted

Gas infall (97) <2:1 <7:5 <7:8 <2:8 0.3
Chemical (97) <2:2 <7:2 <7:8 <2:8 0.6
Heavy metal (00) <2:2 <7:4 <7:8 <2:8 <1:8
LMA (03) <2:5 <7:7 <8:0 <2:9 1.7
Failed SN (09) <2:4 <8:0 <8:4 <3:0 0.7
6 MeV (09) <2:7 <7:4 <8:7 <3:1 1.5
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It is notable that this result is less stringent than the 2003
result of 1:2 !! cm!2 s!1 positron energy >18 MeV. There
are multiple reasons for this.

First, a 0th order approximation of the inverse beta cross
section was then used. Now, the full cross section from [25]
is used. This raises the limit by about 8%. If events with
postactivity are also removed, the old-style analysis limit
becomes 1:35 cm!2 s!1. Furthermore, the binned "2

method used assumed Gaussian statistics, while
Poissonian statistics are more appropriate considering the
low statistics. This alone would change the limit from 1.2
to 1:7 cm!2 s!1. When all these corrections are combined,
the original analysis result of 1:2 !! cm!2 s!1 instead be-
comes 1:9 !! cm!2 s!1.

With our improved analysis, if we neglect atmospheric !
background systematics (which were not fully included in
the 2003 study), the SK-I only LMA result is
1:6 !! cm!2 s!1 (> 18 MeV positron energy), which is
more stringent than the published analysis with these cor-
rections. However, the SK-II and SK-III data show a hint of
a signal, which causes the limit to become less stringent
when all the data are combined, for the final LMA result
(with all systematics) of 2:0 !! cm!2 s!1 > 18 MeV posi-
tron energy, or 2:9 !! cm!2 s!1 > 16 MeV positron energy.

B. Typical SN ! emission limit

Most of the elements involved in a comprehensive pre-
diction of the SRN flux are now fairly well-known [32]
(e.g., initial mass functions, cosmic star formation history,
Hubble expansion, etc.), and thus we can parametrize
typical supernova neutrino emission using two effective
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FIG. 17 (color). True positron spectra in SK for each neutrino
temperature, from 3 to 8 MeV in 0.5 MeV steps (SN !!e

luminosity of 5" 1052 ergs assumed).

SK 1497+794+562 Days

Excluded (E>16MeV)

IMB

Kamioka

νe→e+ (90%C.L.)

S
N

ν e 
E

ne
rg

y 
in

 1
053

er
g

0

1

2

3

Tν in MeV

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

FIG. 18 (color online). Results plotted as an exclusion contour
in SN neutrino luminosity vs neutrino temperature parameter
space. The Irvine-Michigan-Brookhaven (IMB) and
Kamiokande allowed areas for 1987A data are shown (originally
from [35]) along with our new 90% C.L. result. The dashed line
shows the individual 90% C.L. results of each temperature
considered separately, which is not a true two-dimensional
exclusion contour. Results are in the form of Fig. 6 from [32].
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FIG. 19 (color online). Exclusion contour plotted in a parame-
ter space of SRN event rate vs neutrino temperature. The red
shaded contour shows our 90% C.L. result. The dashed line
shows the individual 90% C.L. results of each temperature
considered separately, which is not a true two-dimensional
exclusion contour. CGI is cosmic gas infall model, HMA is
heavy metal abundance model, CE is chemical evolution model,
LMA is large mixing angle model, FS is failed supernova model,
and the 6 and 4 MeV cases are from [13]. For the 4 and 6 MeV
cases a total uncertainty is provided and shown, and the HMA
model gives a range which is shown. Other models have no given
range or uncertainty and are represented by a star.

TABLE V. 90% C.L. flux limit ( !! cm!2 s!1), E! > 17:3 MeV.

Model SK-I SK-II SK-III All Predicted

Gas infall (97) <2:1 <7:5 <7:8 <2:8 0.3
Chemical (97) <2:2 <7:2 <7:8 <2:8 0.6
Heavy metal (00) <2:2 <7:4 <7:8 <2:8 <1:8
LMA (03) <2:5 <7:7 <8:0 <2:9 1.7
Failed SN (09) <2:4 <8:0 <8:4 <3:0 0.7
6 MeV (09) <2:7 <7:4 <8:7 <3:1 1.5
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Upper limit from Super-K


