CO2 · Experiment Super-K upgrade

Yusuke Koshio (Okayama U.)

Annual symposium of innovative area "GW-Genesis" Kashiwa campus, University of Tokyo, 7th March, 2018

30 years anniversary of SN1987A

(2017)

Workshop at Koshiba hall in U.of.Tokyo on February 12-13, 2017, supported by the previous innovative area

http://www-sk.icrr.u-tokyo.ac.jp/indico/conferenceDisplay.py?confld=2935

Birthday cake

7th February, 2018

30 years anniversary of SN1987A

http://www-sk.icrr.u-tokyo.ac.jp/indico/conferenceDisplay.py?confld=2935

No Supernova neutrino detection since then..

7th February, 2018

GW-Genesis

No chance for Supernova neutrino detection for next hundred's years? We believe, yes!

Galactic Supernova burst

(a few per century)

Diffuse Supernova

Neutrino Background

Why important for CCSNe?

ApJ 811, 86 (2015)

GW-Genesis

Neutrino interaction for supernova neutrino detection

Inverse beta decay

$$\left(\overline{\nu}_{e} + p \rightarrow e^{+} + n \right)$$

✓ Detect positron signal in water, scintillator, etc.

 $\checkmark \overline{v_e}$ sensitive

 \checkmark Obtain the neutrino energy from the positron energy

• $E_e \sim E_v - (m_n - m_p), E_v > 1.86 MeV$

✓ Well known and large cross section

✓ Neutron tagging using delayed coincidence

• n + p \rightarrow d + γ , n + Gd \rightarrow Gd + γ

Strumia, Vissani Phys. Lett. B564 (2003) 42

Inverse beta decay

$$\left(\overline{\nu}_{e} + p \rightarrow e^{+} + n \right)$$

✓ Detect positron signal in water, scintillator, etc.

 $\checkmark \overline{v_e}$ sensitive

 \checkmark Obtain the neutrino energy from the positron energy

• $E_e \sim E_v - (m_n - m_p), E_v > 1.86 MeV$

✓ Well known and large cross section

✓ Neutron tagging using delayed coincidence

• n + p \rightarrow d + γ , n + Gd \rightarrow Gd + γ

Elastic scattering

 $\nu_{e,x} + e^{-} \rightarrow \nu_{e,x} + e^{-}$

 \checkmark Detect recoil electron signal in water, scintillator, etc.

✓ All neutrinos are sensitive
 ✓ Measurable for only recoil electron
 energy, not neutrino energy
 ✓ Well known cross section, few %
 of inverse beta decay
 ✓ Good directionality

Elastic scattering

 $\left(\nu_{e,x} + e^{-} \rightarrow \nu_{e,x} + e^{-} \right)$

✓ Detect recoil electron signal in water, scintillator, etc.

 ✓ All neutrinos are sensitive
 ✓ Measurable for only recoil electron energy, not neutrino energy
 ✓ Well known cross section, few % of inverse beta decay
 ✓ Good directionality

 $v_{e,x}$ e $\Delta\theta \sim 25^{\circ}/\sqrt{N}$ 0.4 Angular distribution between incident neutrino 0.3 and recoil electron E_v=10MeV 0.2 0.1 0_ -1 -0.5 0.5 0

Water Cherenkov

COS

SN search at Super-Kamiokande

Super-K to SK-Gd

e glob e larg e larg llues Δm_{21}^2 ND 1 d to Δm_{21}^2 is 0.0) at t ng wi $n^2 \theta_{13}$ sin² θ

spa

Kamioka underground detectors

7th February, 2018

Super-Kamiokande

50kton Water Cherenkov detector

Super-Kamiokande

Super-Kamlokande

Run 1742 Event 102496 96-05-31:07:13:23 Inner: 103 hits, 123 pE Outer: -1 hits, 0 pE (in-time) Trigger ID: 0x03 E= 9.086 GEN=0.77 COSSUN= 0.949 Solar Neutrino

Time(ns)

- 1075-1095
 >1095

For supernova neutrinos (~MeV)

How to reconstruct?

Detector performance

Resolution@10MeV Information

vertex	55cm	hit timing
direction	23deg.	hit pattern
energy	14%	# of hits.

~ 6 hits/MeV

well calibrated by LINAC / DT within 0.5% precision

1500

Super-Kamiokande

Diffuse Supernova Neutrino Background (DSNB)

Neutrinos emitted from past supernovae

S.Ando

7th February, 2018

DSNB in Super-K

Current Super-K w/o neutron tagging

DSNB in upgraded Super-K

- •Delayed coincidence
 - Suppress B.G. drastically for $\overline{v_e}$ signal
 - ΔT~20µsec
 - Vertices within ~50cm

GADZOOKS!

Dissolve Gadolinium into Super-K J.Beacom and M.Vagins, Phys.Rev.Lett.93 (2004) 171101

Schedule of the Super-K Gd

Start refurbishment of Super-K on 1st June, 2018

Leak fixing

7th F

J -

Leak fixing

Cover all the welded places with sealing materials

Cover with two materials. One is **BIO-SEAL 197** (epoxy resin) which sneak into small gaps, the other is 'Material' (poly-urea) which allows more displacement.

Need to wait several hours to the next step **BIO-SEAL 197** SUS SUS

'Material' (two layers) Primer between MineGuard and SUS

> Backer as a bank to keep the coating region

Mock-up test in the underground

Working inside the Super-K

Summary

Ready for the first discovery of the DSNB!

Thanks

Physics expectation in SK-Gd

For Supernova burst neutrinos

7th February, 2018

GW-Genesis

Physics expectation in SK-Gd

DSNB flux: Horiuchi, Beacom and Dwek, PRD, 79, 083013 (2009)

It depends on typical/actual SN emission spectrum

DSNB events number with 10 years observation

Total (positron) energy MeV

HBD models	10-16MeV (evts/10yrs)	16-28MeV (evts/10yrs)	Total (10-28MeV)	significance (2 energy bin)
T _{eff} 8MeV	11.3	19.9	31.2	5.3 σ
T _{eff} 6MeV	11.3	13.5	24.8	4.3 σ
T _{eff} 4MeV	7.7	4.8	12.5	2.5 σ
T _{eff} SN1987a	5.1	6.8	11.9	2.1 σ
BG	10	24	34	

Proposed in 2004, but not so easy.

EGADS as R&D

(Evaluating Gadolinium's Action on Detector Systems)

Purpose

✓ Water transparency✓ How to purify

✓ How to introduce and remove

✓ Effect on detector
 ✓ Effect from
 environment neutrons

R&D for Gd test experiment

Great success by the previous innovative area!

 $\sqrt{\text{etc.}}$

200 ton tank EGADS as R&D

15 ton buffer tank Control panel of circulation system

7th February, 2018

GW-Genesis

EGADS as R&D

Very stable and continuous data taking

7th February, 2018

GW-Genesis

Neutron tagging efficiency

Neutron capture time

	2178 <u>+</u> 44ppm	1055 <u>+</u> 21ppm	225 <u>+</u> 5ppm
Data	29.89 <u>±</u> 0.33	51.48 ± 0.52	130.1±1.7
MC	30.03 ± 0.77	53.45 <u>+</u> 1.19	126.2±2.0

Neutron capture efficiency

Data	МС
84.36± 1.79%	84.51 <u>±</u> 0.33%

7th February, 2018

DSNB in Super-K

Upper limit from Super-K

SK collaboration, Phys. Rev. D 85, 052007 (2012)