

J-PARCニュートリノビームの大強度化 に向けた非破壊型ビームプロファイ ルモニター用ガスシステムの研究

中村亜津志

小汐由介、Megan Friend^A、Mark Hartz^B、 Christophe Bronner^C、坂下健^A、Son Cao^A

岡大理 KEK素核研^A 東大カブリIPMU(WPI)^B 東大宇宙線研^c

目次

- 1. T2K実験におけるJ-PARC陽子ビーム
 - ・陽子ビーム増強とビームモニター

•Beam Induced Fluorescence (BIF) モニター

2. テストチェンバーによる真空実験

- •平衡状態
- ・パルス的供給

大強度陽子ビームとビームモニター

ここに

ビームが当たる

<ビームライン上のビームモニター(SSEM)>

<陽子ビームの増強>

現在:470 kW

->1.3 MW まで増強し、δ_{CP}を高精度で測定

・破壊型ビームモニター(SSEM)では モニターの寿命低下、損傷の恐れがある

→<u>非破壊型ビームモニター</u>

・ビーム損失の割合:<u>5*10⁻⁵(SSEM1</u>台あたり) <BIFモニターの模式図>

パルス的ガス供給時の圧力変化

・ごく短い時間(数百µs)に、一定の流量が流れた時の圧力の時間変化

$$P(t) = \begin{cases} \frac{Q}{S}(1 - e^{-\frac{S}{V}t}) + P_f & (t_{open} < t \le t_{close}) \\ P(t = t_{close}) e^{-\frac{S}{V}(t - t_{close})} + P_f & (t_{close} < t) \end{cases}$$

今日の内容

・テストチェンバーを用いた排気速度S とガス供給量Qの測定 ・予想圧力変化と測定された圧カパ ルスを比較

目次

- 1. T2K実験におけるJ-PARC陽子ビーム
 - ・陽子ビーム増強とビームモニター
 - •Beam Induced Fluorescence (BIF) モニター •BIF圧力系

2. テストチェンバーによる真空実験

- •平衡状態
- ・パルス的供給

<供給部>

<真空計>

7

パルスバルブとパルス流量の測定

パルスバルブによるパルス供給実験

パルス実験結果と予想の比較

P(t):シミュレーション+パルス流量からの予想圧力変化(far)

測定結果(点、farでの10パルス分の平均)

expected pressure pulse(far)

P VS time(Prs0)

まとめ

cold cathod

・非破壊型のBIFモニターは 高強度化した陽子ビームに対応可能

・ガスをパルス供給するシステムの研究が進行中

- ・排気速度…平衡状態の実験 -実験とシミュレーションは無矛盾
- ・パルス供給…予想と実験が異なる
 -真空計の応答の考慮
 -実際の圧力変化(拡散)の理解

<今後の計画> ・シミュレーションによるパルス的供給時の 圧力シミュレーション

・応答関数を用いた測定圧力の解析

Back up

	2017年(現在)	2019年以降
取り出し周期	2.48 s	1.3s →1.16 s
陽子数	2.2*10 ¹⁴ 個/spill	3.2*10 ¹⁴ 個/spill
ビーム強度	470 kW	750 kW → 1.3 MW

ビームモニター

Beam Induced Fluorescence(BIF) モニター

ビーム損失:10⁻⁹ (10⁻² Pa)

・ビームライン上のガス分子(N₂)と陽子の相互作用からの蛍光を利用した 非破壊型ビームモニター

・1000光子検出…10⁻³ Pa(←10⁻⁶ Pa) →<u>ガスを外部から供給する</u>

beam direction ・重イオンビーム(200MeV/u、Xe⁴⁸⁺)の プロファイル例(~0.1 Pa、GSI)

F.Becker*etal.,*"Beam induced fluorescence(BIF) monitor for transverse profile determination of 5 to 750 MeV/u heavy ion beams"より

テストチェンバー

パルスバルブの断面図

真空系のシミュレーション

真空中(<10⁻² Pa)の分子

<u>分子の平均自由行程 λ</u>~<u>チェンバーのサイズ(</u>分子流領域)

・分子間の相互作用はほとんどない …理想気体(Maxwell-Boltzmann 速度分布) $P_{eq} = \frac{Q}{S} \rightarrow \frac{Q}{S_{eff}}$ ・気体はチェンバー内壁とのみ相互作用 …流れは形状によって決まる(菅のコンダクタンス:C_i) →排気速度(S)は測定場所・形状によって変化する(実行排気速度:S_{eff})

実効排気速度とテストチェンバー

圧力変化しない時(定常状態): $P_{eq} = rac{Q}{S_{eff}}$

P_{eq}:平衡圧力 S_{eff}:実行排気速度 Q:流入量

 $\mathbf{S}_{\mathrm{[L/S]}} \quad \frac{1}{S_{eff}} = \frac{1}{S} + \sum_{i} \frac{1}{C_{i}}$

S:ターボ分子ポンプの排気速度 (カタログ値 S=210[L/s](N₂))

C_i:ポンプから測定場所までの 配管のコンダクタンス

・複雑な形状のコンダクタンス…シミュレーションが必要

圧カシミュレーションよりP_{eq}-Qプロットを作成し比較….COMSOL、Molflow

排気速度の実験~②平衡圧測定~

pressure VS time

pressure[Pa] pressure[Pa] $\mathsf{P}_{\mathsf{far}}$ $\mathsf{P}_{\mathsf{far}}$ 10 (3)P_{near} $\mathsf{P}_{\underline{\mathsf{near}}}$ (2)10⁻² 10^{-1} set 16 10⁻² 10^{-3} set 16 set 14 set 12 set 10 10⁻³ -set 6 10^{-4} (1) ~5min 10^{-4} 10^{-5} 10⁻⁵ 10000 11000 5000 6000 7000 8000 9000 10000 10100 10200 10300 10400 10500 10600 10700 time[sec] time[sec] (1) 10⁻⁵ Paほどまで分子ポンプで排気 圧力変化のプロット (2) リークバルブをセットして **洽陰極型** パルスバルブを5分間開く S[L/s] $\mathsf{P}_{\mathsf{far}}$ (3) リークバルブのベントを行う 平衡部分の圧力を測定 Q[Pa*L/s] $\mathsf{P}_{\mathsf{near}}$ →P。。-Qプロットを作成

冷陰極型

pressure VS time

実行排気速度の結果 (Short)

Comparison of Pressure Change between Expectation and Measurement $P(t) = \begin{cases} \frac{Q}{S}(1 - e^{-\frac{S}{V}t}) + P_f & (t_{open} < t \le t_{close}) \end{cases}$

* t_{close} = t_{open} +ON TIME、P_f=1e-5 [Pa]、V=20.5 [L](long chamber)

(COMSOL)	far	near
S[L/s]	128	193

ON TIME[μs] (exp.)	300	400	500	600
Q[Pa*L/s](0.2 MPa)	283	1196	3098	7144

実験結果とConvolutionによる解析

測定結果(far、点)と Convolution(線、σ=0.7[s] offset=3[s])

convolution and Exp. resut(far, σ =0.7[s],offset=3[s])

平衡状態におけるQ-P_{eq} プロット

Summary

- R&D of pulsed injection system is in progress
- Measurements of the effective pumping speed of test chambers are consistent with simulations(COMSOL, Molflow)
- Measured pressure change is different compared with the calculation

...understanding gauge response is going on ...one of the causes is pulse flow understanding ->plan to improve the pulse flow measurement ->time-depended simulation with Molflow is under studying

